scholarly journals Experimental and Numerical Investigation on the Effects of Foundation Pit Excavation on Adjacent Tunnels in Soft Soil

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zi-Tian Yu ◽  
Heng-Yu Wang ◽  
Wenjun Wang ◽  
Dao-Sheng Ling ◽  
Xue-Dong Zhang ◽  
...  

Excavations near an existing tunnel are often encountered in underground construction. The influence of the excavation on the adjacent tunnels is not yet fully understood. This study presented a centrifugal model test about excavation next to existing tunnels in soft soil foundation. The bending moment of diaphragm wall, surface settlement, tunnel deformation, and earth pressure around the tunnel were mainly studied. The influence of tunnel location is further studied by numerical simulation. During the stabilization stage of foundation pit, the diaphragm walls present convex deformation towards foundation pit, and the surface settlement outside the diaphragm wall appears to be the concave groove type. During the overexcavation stage, the diaphragm walls are almost damaged, and the shear bands are nearly tangent to the tunnels. The displacement of the tunnels and the surface settlement rapidly increase. The deformation of the diaphragm wall and the surface settlement are limited by the existing tunnel. The numerical results indicate that the change of tunnel location has little effect on the retaining wall but an obvious effect on the tunnel itself.

2011 ◽  
Vol 52-54 ◽  
pp. 2181-2186
Author(s):  
Guang Zhu Zhou ◽  
Xu Wei ◽  
Chen Yu

This paper is mainly to study earth pressure on Gcrw used as a new kind of supporting structures in the excavation of deep foundation pits in soft soil region. On the basis of the simulation of step by step excavation by using big finite element software Abaqus/CAE and considering three-dimension elastoplastic stress state, the characteristics of different earth pressure are systematically discussed upon practical engineering. By comparing simulation results with calculated results based on calculation formula of Rankine Theory, it can be seen that the earth pressure in active zone is different from theoretic active earth pressure and earth pressure at rest while walls and soil in the gridding are regarded as a whole, which is greater than the former and somewhere similar to the latter, the earth pressure in passive zone is bigger than theoretic value of passive earth pressure, it is the tensive force from partition wall that prevent the front wall from overturning. These conclusions will be helpful for design and construction of new retaining wall.


2013 ◽  
Vol 353-356 ◽  
pp. 341-346
Author(s):  
Ying Cheng ◽  
Ai Zhao Zhou

This pape combined with the engineering example of a supporting muddy soil foundation pit,used the finite element numerical analysis method, discussed on mechanical deformation characteristics of the cement-soil pile and concrete pile composite retaining structure (MC pile for short ) , Including the effect of section parameters of MC pile on the horizontal displacement of supporting structure, settlement of ground surface and bottom heave. The results show that, MC pile composite retaining structure are beneficial to control the deformation of foundation pit, and increase the stability of foundation pit; M pile retaining wall width to reduce the deformation of the retaining structure has obvious effect, which increase the width of wall can decrease the bending moment ,inclination deformation of supporting structure and lowe bottom heave and surface settlement. Moreover, in the same wall width, there is no C pile to control the deformation of the retaining structure and deformation of the foundation also has a great role.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yunxin Zheng ◽  
Zhiping Hu ◽  
Xiang Ren ◽  
Rui Wang ◽  
Enxiang Zhang ◽  
...  

Partial supporting piles removal from deep foundation pit may lead to large-scale foundation pit collapse, resulting in severe consequences. Various studies have investigated the underpinning technology of cutting abutment piles by combining field monitoring and numerical simulation, but there are few studies on cutting supporting piles of foundation pit by the shallow excavation method. Taking an actual deep and large foundation pit as an example, the finite element method (FEM) was adopted to study the surface settlement and the changing trend of the force and displacement of the supporting pile caused by cutting piles during the shallow excavation of double tunnels. The FEM results were verified with the field monitoring data. The simulation results show that the surface settlement around the foundation pit mainly occurs at the pile cutting stage under different excavation sequences (0D, 1D, 2D), and the main distribution area is the one-fold diameter area outside the double tunnel. After the supporting piles are partially cut, the bending moment and displacement of the lower part of the broken piles differ significantly due to different excavation sequences, but the bending moment and displacement of the upper part of the broken piles are basically similar. In the process of removing the supporting piles, the Earth pressure behind the piles is redistributed, and the load is mainly transferred to the adjacent supporting piles outside the tunnel within the radius of one time of the tunnel diameter. However, the load is not evenly transferred to the adjacent supporting piles. Some recommendations for the reinforcement scheme of the supporting structure during cutting supporting piles in deep foundation pit are also proposed. The research results can provide theoretical basis and practical guidance for the construction of similar projects in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yousheng Deng ◽  
Zhihe Cheng ◽  
Mengzhen Cai ◽  
Yani Sun ◽  
Chengpu Peng

Bamboo is highly renewable and biodegradable with good short-term strength, which meets the requirement for temporal support structures in shallow foundation pits. Based on this, we conducted a laboratory model test on the dentate bamboo micropile support structure combined with environmentally friendly building materials and new type of piles, to explore the stress characteristics, stress change regularity, and the support effect of the system in soft soil foundation pits. The results show that the earth pressure on the pile sides above the excavation surface gradually decreases with an increase in the excavation depth. The bending deformation of the bamboo pile was also significant. The results also show that the earth pressure and the pile strain below the excavation surface change slightly during the excavation process. When the short sides of the foundation pit were loaded, the highest strain was recorded in the piles 4 and 11. A maximum strain of 358.93 με was recorded, and the maximum displacement of the pile in the top part was obtained to be only 2.14 mm. The most subsidence of dentate pile obtained is only 1.88 mm, whereas that of the single-row pile is 2.35 mm. Compared to the traditional single-row pile, the dentate piles can effectively reduce the horizontal deformation as well as the surface subsidence effectively. They can also support more external lateral load, and hence maintain the foundation stability and give better support. The results provide a theoretical basis for ecological bamboo support technology and have great value to be promoted.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Li ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Jun Ren ◽  
Gaofeng Lu ◽  
...  

Based on the Yongdingmen Station of Beijing Metro, the underwater excavation method for deep foundation pit was introduced. This study constructed a numerical analysis model to analyze the performance of surface settlement and lateral wall deflection in the process of underwater excavation. Results showed that this method was better to control the surface settlement and lateral wall deflection compared with other dewatering excavations. In detail, most of the surface settlement was caused during the dry excavation stage and dewatering excavation stage while the deflection caused by underwater excavation only accounted for about 10% of the total settlement. Besides, the maximum settlement occurred 0.25∼0.5 H e behind the retaining wall and the value was 0.04% H e . Similar to the result of the surface settlement, most of the lateral wall deflection had been completed before the underwater excavation, which only caused about 7% of the total deflection. The maximum wall deflection and its location were approximately 0.06% H e and 0.5 H e , respectively. Moreover, a series of 3D numerical analyses were studied on the design parameters of the underwater excavation method. This study can be used as a reference for general performance and structural design of foundation pits with underwater excavation.


2011 ◽  
Vol 243-249 ◽  
pp. 2266-2270
Author(s):  
Guang Zhu Zhou ◽  
Xu Wei ◽  
Chen Yu

As a new type of building envelope, Gcrw is mainly used for excavation of foundation pit. It can stand by itself without the help of bracing, especially in soft soil area. Its stressed characteristic hasn’t been known yet. By using advanced big finite element software Abaqus/Cae, a simulation was made on model of Gcrw under soil pressure when a foundation pit is dug, while the whole excavation is divided into three continuous independent excavation stages. The result shows that Gcrw is a rather good building envelope, Gcrw and soil in the gridding form an integral earth-retaining structure and keep balance under soil pressure before or behind the structure, and have little displacement in horizontal direction. It is like a gravity-type retaining wall in its entirety, but takes on an elastic characteristic. The soil pressure presents a linear change, but its value is less than the theoretical value of calculation. The front wall of Gcrw, like a sheet, is the main flexural construction element, which is subjected to the pressure from side wall of foundation pit and produce curve deformation. The back wall of Gcrw has little displacement and almost is built in the clay. The partition wall endures the effect of the tensile force, its horizontal deformation increases with the build-in depth’s increasing. The back wall and the partition wall play a very important role in dragging back the front wall, the role of them is similar to a pair of anchor tie. The soil in the gridding not only provides soil pressure, but also can fix the back wall, so it is seen as a part of Gcrw and in favor of the Gcrw’s anti-overturn.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuan Mei ◽  
Dongbo Zhou ◽  
Xueyan Wang ◽  
Liangjie Zhao ◽  
Jinxin Shen ◽  
...  

So far, there have been a large number of diaphragm walls in the Yangtze River Delta as engineering examples of deep foundation pit maintenance structures in subway stations, but there is a lack of systematic research and summary on the deformation characteristics of ground connecting walls. This study aimed to clarify the deformation law of the diaphragm wall during the excavation of a deep foundation pit in a soft soil region. Based on the monitoring data of the diaphragm wall of the deep foundation pit of the Hangzhou metro station, the monitoring data of the deep foundation pits of 15 subway stations in Shanghai and Ningbo cities around Hangzhou were considered. Grouping and classification methods were used to analyze the similarities and differences in the deformation characteristics of the diaphragm wall in the three regions. The results indicate the following: the maximum lateral deformation of the diaphragm wall in Hangzhou increases linearly with the relative depth of the maximum lateral deformation. The maximum lateral deformation of the foundation pit in Hangzhou is 0.072% H∼0.459% H, with a mean of 0.173% H. The wall deformation in Hangzhou varies significantly with the depth of the foundation pit, but the influence of the depth of the foundation pit on the wall deformation is considerably less than that in Shanghai and Ningbo. The corresponding position of the maximum lateral deformation in the excavation depth increases linearly with the excavation depth of the foundation pit, and the corresponding position of the lateral deformation of the diaphragm wall in Shanghai is more affected by the excavation depth of the foundation pit. The lateral deformation of the diaphragm wall increases rapidly in the range of 0 H–0.5 H, and the maximum lateral deformation occurs at 0.5 H–1.1 H.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012030
Author(s):  
Jayesh Harode ◽  
Kuldeep Dabhekar ◽  
P.Y. Pawade ◽  
Isha Khedikar

Abstract It is now becoming very essential to analyse the behaviour of retaining structures due to their wide infrastructural applications. The important factors which are affecting the stability of the retaining wall are the distribution of earth pressure on the wall, material of backfill & its reaction against earth pressure. There are several types of retaining walls, out of them the cantilever retaining wall is adopted for present design and study. In this paper, the study of literature based on the design of the cantilever retaining walls under seismic or dynamic conditions is studied. From the studied literature, many authors performed their calculations in Excel sheets by a manual method. Then the Results obtained from the manual calculation are then validated in STAAD pro. Several authors show the calculated quantity of steel and concrete required for various heights of walls. It is also concluded from the study that the design of cantilever retaining wall is suitable, safe, and economical up to a height of 6m, after that banding moment at toe increases. Some authors have also shown the calculated factor of safety for different height conditions. From the study of mentioned literature, we can recommended to also show the graph of bending moment with height variation. Both the designs are done for various heights ranging from 3 m to 6 m.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012051
Author(s):  
Ruibin Yang ◽  
Xinsheng Li ◽  
Dongzhou Xie ◽  
Hongte Meng

Abstract At present, in deep foundation pit engineering, on the one hand, practice is ahead of theory, and on the other hand, theory can not correctly reflect the actual construction process and environmental effects. In order to further study the distribution and change law of earth pressure and internal force of pile body in deep foundation pit pile-anchor supporting system, field monitoring test of earth pressure and pile body reinforcement stress was carried out. The monitoring results show that before excavation, the distribution of earth pressure has a great relationship with the layering of the soil, and it is distributed in sections along the depth. Compared with the theoretical static earth pressure, the measured data of the upper depth is relatively small; after excavation, the overall earth pressure is distributed along the depth in a “z” shape under the non-limiting state. As the excavation progresses, the magnitude of the reduction of the earth pressure varies from place to place, and the magnitude of the decrease of the soil with better properties is not large; after the excavation, the stress and earth pressure of the pile reinforcement correspond to each other, and the distribution is also nonlinear. The existence of anchor tension has an obvious effect on improving the internal force of the pile. The selected earth pressure calculation methods have some discrepancies in the calculation of the earth pressure value of the project, and they need to be further improved. The research in this paper can provide reference and reference for the calculation of earth pressure and support design of pile-anchor supported foundation pit.


2013 ◽  
Vol 10 (6) ◽  
pp. 573-576
Author(s):  
Zhiguang Guo ◽  
Guoyong Cheng ◽  
Fan Wang

Coulomb's earth pressure theory is widely used in foundation pit supporting structure and retaining wall design, and Rupture angle is one of the key parameters in determining the failure surface location and the foundation pit influence scope. But there is no explicit formula of rupture angle or some wrong in existing formula. This paper, according to the limit equilibrium condition of slide wedge, obtained the analytical expression of Rupture angle which is the most simplified form in the current information. Through the numerical test this simplified solution is consistent with coulomb theory. The conclusion of this paper has some reference value in engineering application of coulomb theory.


Sign in / Sign up

Export Citation Format

Share Document