scholarly journals Review on “Assessment of the effect of lateral dynamic forces on rcc cantilever l-shaped and t-shaped retaining wall with height variations”

2021 ◽  
Vol 1197 (1) ◽  
pp. 012030
Author(s):  
Jayesh Harode ◽  
Kuldeep Dabhekar ◽  
P.Y. Pawade ◽  
Isha Khedikar

Abstract It is now becoming very essential to analyse the behaviour of retaining structures due to their wide infrastructural applications. The important factors which are affecting the stability of the retaining wall are the distribution of earth pressure on the wall, material of backfill & its reaction against earth pressure. There are several types of retaining walls, out of them the cantilever retaining wall is adopted for present design and study. In this paper, the study of literature based on the design of the cantilever retaining walls under seismic or dynamic conditions is studied. From the studied literature, many authors performed their calculations in Excel sheets by a manual method. Then the Results obtained from the manual calculation are then validated in STAAD pro. Several authors show the calculated quantity of steel and concrete required for various heights of walls. It is also concluded from the study that the design of cantilever retaining wall is suitable, safe, and economical up to a height of 6m, after that banding moment at toe increases. Some authors have also shown the calculated factor of safety for different height conditions. From the study of mentioned literature, we can recommended to also show the graph of bending moment with height variation. Both the designs are done for various heights ranging from 3 m to 6 m.

2014 ◽  
Vol 971-973 ◽  
pp. 2141-2146
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu

Using the frame supporting structure of pre-stressed anchor bolt seismic strengthening technology reinforced the instability of gravity retaining wall. Earth pressure of retaining wall in seismic reinforcement after shall take between active and static earth pressure for the form of the distribution . In this paper, based on the limit equilibrium theory, and the whole stability for retaining walls is analysis, the theoretical formula of the stability safety factor between stability against slope and overturning safety factor is derived. By calculation and comparative analysis with an example, the stability safety factor of gravity retaining wall with introducing this strengthening technology is improved obviously. Keywords: frame anchor structure; seismic strengthening; anti-slip and anti-overturning; stability coefficient;


Retaining walls are widely used as permanent structures for retaining soils at different levels.Type of the wall depends on the soil pressure, such as active or passive earth pressure and earth pressure at rest and drainage conditions. Types of walls generally used are gravity walls, RCC walls, counterfort walls and buttress retaining walls. Retaining walls behavior depends on the wall height and retention heights of the soil at its backfill. Retaining walls are used with tying with more than one wall at perpendicular joints to retain liquids, water storage and materials storages such as dyke walls and tanks. Retaining walls excessively used in culverts and as well as in the bridges for construction of abutment wing walls supposed to resist soil pressures laterally applied perpendicular to the axis of the walls.Based on the present scenario used in retaining structures within the civil industries there requirements of height of walls are being increased due to lake of land and cost of sub structures being incurred in the project work, higher height of walls develops huge bending moment at the base because of the cantilever action of the walls, thus resulting in higher sections at the base which deploys into a uneconomical zone so different wall systems are required in different arrangements so as to transfer the loads with limited sections. In the present study retaining walls of height 6m, 9m and 12m are considered for study and the length of the walls considered as 30m and the material properties considered are M20 and Fe415 steel bars and the supports considered to be fixed at the base


2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.


2019 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Nimbalkar ◽  
Pain ◽  
Ahmad ◽  
Chen

An accurate estimation of static and seismic earth pressures is extremely important in geotechnical design. The conventional Coulomb’s approach and Mononobe-Okabe’s approach have been widely used in engineering practice. However, the latter approach provides the linear distribution of seismic earth pressure behind a retaining wall in an approximate way. Therefore, the pseudo-dynamic method can be used to compute the distribution of seismic active earth pressure in a more realistic manner. The effect of wall and soil inertia must be considered for the design of a retaining wall under seismic conditions. The method proposed considers the propagation of shear and primary waves through the backfill soil and the retaining wall due to seismic excitation. The crude estimate of finding the approximate seismic acceleration makes the pseudo-static approach often unreliable to adopt in the stability assessment of retaining walls. The predictions of the active earth pressure using Coulomb theory are not consistent with the laboratory results to the development of arching in the backfill soil. A new method is proposed to compute the active earth pressure acting on the backface of a rigid retaining wall undergoing horizontal translation. The predictions of the proposed method are verified against results of laboratory tests as well as the results from other methods proposed in the past.


2015 ◽  
Vol 725-726 ◽  
pp. 185-189
Author(s):  
Alexey Melentev ◽  
Vladimir Korovkin

Shows the proposed method for the calculation of mirroring duhaney retaining wall. This method is through the use of multiple design schemes can more accurately determine the lateral pressure on the wall, given compliance supports. In this case, the bending moment diagram in the wall and supports efforts depend on the variable diagrams of lateral pressure on the wall associated with the position of the line relative to its elastic neutral axis. Given the uncertainty about the quantities displacement of supports, it is proposed to take into account the upper limit of the voltage equal to the appearance of the yield plateau in the anchor rod. In this case, the plastic yielding of the anchor rod to limit effort in it, due to the redistribution of stresses to the other rod. Practical recommendations for the optimal production of works in the construction of continuous dvuhankerny walls.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


2020 ◽  
pp. 65-75
Author(s):  
Liudmyla Skochko ◽  
Viktor Nosenko ◽  
Vasyl Pidlutskyi ◽  
Oleksandr Gavryliuk

The stability of the slope in the existing and design provisions is investigated, the constructive decisions of retaining walls on protection of the territory of construction of a residential complex in a zone of a slope are substantiated. The stability of the slope when using rational landslide structures is estimated. The results of the calculation of the slope stability for five characteristic sections on the basis of engineering-geological survey are analyzed. For each of the given sections the finite-element scheme according to the last data on change of a relief is created. The slope was formed artificially by filling the existing ravine with construction debris from the demolition of old houses and from the excavation of ditches for the first houses of the complex. Five sections along the slope are considered and its stability in the natural state and design positions is determined. Also the constructive decisions of retaining walls on protection of the territory of construction of a residential complex as along the slope there are bulk soils with various difference of heights are substantiated. This requires a separate approach to the choice of parameters of retaining walls, namely the dimensions of the piles and their mutual placement, as well as the choice of the angle of the bulk soil along the slope. The calculations were performed using numerical simulation of the stress-strain state of the system "slope soils-retaining wall" using the finite element method. An elastic-plastic model of soil deformation with a change in soil parameters (deformation module) depending on the level of stresses in the soil is adopted. Hardening soil model (HSM) used. Calculations of slope stability involve taking into account the technological sequence of erection of retaining walls and modeling of the phased development of the pit. The simulation was performed in several stages: Stage 1 - determination of stresses from the own shaft, Stage 2 - assessment of slope stability before construction, Stage 3 - installation of retaining wall piles, Stage 4 - assessment of slope stability after landslides. Based on these studies, practical recommendations were developed for the design of each section of the retaining wall in accordance with the characteristic cross-sections.


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 69
Author(s):  
Adelina Melati Sukma

On the construction of green open space Jl. Kinibalu Banjarbaru There is a 6 meters tall slope beneath which the river is lined up during the rainy season and makes the slope exposed by water plus the absence of load or traffic on it make the pore figures on the land is large. Therefore, for protection reason, there is a soil alignment in the construction of soil retaining walls. The planned ground retaining wall type is cantilever and gabion. The stability analysis of the ground retaining walls is done manually and with the help of the Geoslope/W 2018 software. The value of the stability of the style against the bolsters, sliding, and carrying capacity of the soil using manual calculations for cantilever type and Netlon qualifies SNI 8460:2017. And for the overall stability calculation using Geoslope/W 2018 software obtained safety factor (SF) > 1.5. From the analysis, the design of planning can be used because it is safe against the dangers of avalanche.


Retaining walls are structures used not only to retain earth but also water and other materials such as coal, ore, etc. where conditions do not permit the mass to assume its natural slope. In this chapter, after considering the types of retaining wall, earth pressure theories are developed in estimating the lateral pressure exerted by the soil on a retaining structure for at-rest, active, and passive cases. The effect of sloping backfill, wall friction, surcharge load, point loads, line loads, and strip loads are analyzed. Karl Culmann's graphical method can be used for determining both active and passive earth pressures. The analysis of braced excavations, sheet piles, and anchored sheet pile walls are considered and practical considerations in the design of retaining walls are treated. They include saturated backfill, wall friction, stability both external and internal, bearing capacity, and proportioning the dimensions of the retaining wall. Finally, a brief treatment of earth pressure on underground structures is included.


Sign in / Sign up

Export Citation Format

Share Document