scholarly journals UPLC-MS/MS-Based Rat Serum Metabolomics Reveals the Detoxification Mechanism of Psoraleae Fructus during Salt Processing

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dan Wang ◽  
Na Li ◽  
Shengrong Li ◽  
Yilong Chen ◽  
Leilei He ◽  
...  

Psoraleae Fructus (PF) is a botanical medicine widely used in Asian countries, of which salt products have higher safety and efficacy. However, the biological mechanism of the detoxification of salt-processing Psoraleae Fructus (SPF) has not yet been revealed. In this study, UPLC-MS/MS technology was used to explore the metabolic differences between SPF and PF in normal rats and reveal the mechanism of salt processing. The histopathological results of rat liver and kidney showed that the degree of liver and kidney injure in the SPF group was less than that in the PF group. The results of metabolomics showed that the detoxification mechanism of PF by salt processing might be related to glycerophospholipid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, arginine and proline metabolism, phenylalanine metabolism, and linoleic acid metabolism. PF-induced inflammation could be reduced by regulating the expression of metabolites to achieve the purpose of salt processing and detoxification. It included reducing the production of metabolites such as 1-acyl-sn-glycero-3-phosphocholine, sn-glycero-3-phosphocholine, tyrosine, arginine, linoleic acid, arachidonic acid, and phenylacetylglycine/hippuric acid ratio and upregulating the expression of metabolites such as creatine.

2021 ◽  
Vol 7 ◽  
Author(s):  
Shaobing Xie ◽  
Hua Zhang ◽  
Yongzhen Liu ◽  
Kelei Gao ◽  
Junyi Zhang ◽  
...  

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease characterized by different clinical features and treatment responsiveness. This study aimed to compare the serum metabolomics profiles between eosinophilic CRSwNP (eCRSwNP) and non-eosinophilic CRSwNP (neCRSwNP) and healthy controls (HC) and explore objective biomarkers for distinguishing eCRSwNP before surgery.Methods: Serum samples were collected from 33 neCRSwNP patients, 37 eCRSwNP patients, and 29 HC. Serum metabolomics profiles were investigated by ultra-high-performance liquid chromatography–mass spectrometry.Results: The analysis results revealed that neCRSwNP, eCRSwNP, and HC exhibited distinctive metabolite signatures. In addition, eCRSwNP could be distinguished from neCRSwNP referring to their serum metabolic profiles, and the top ten different metabolites were citrulline, choline, linoleic acid, adenosine, glycocholic acid, L-serine, triethanolamine, 4-guanidinobutyric acid, methylmalonic acid, and L-methionine, which were related to several most important pathways including arginine and proline metabolism; glycine, serine, and threonine metabolism; linoleic acid metabolism; and purine metabolism. Among these distinctive metabolites, citrulline, linoleic acid, adenosine, and 4-guanidinobutyric acid showed good predictabilities, and the serum levels of citrulline, linoleic acid, and adenosine were significantly correlated with tissue eosinophil (T-EOS) percentage and T-EOS count.Conclusion: eCRSwNP patients exhibited discriminative serum metabolic signatures in comparison with neCRSwNP patients and HC. These results suggested that metabolomics profiles contributed to understanding the pathophysiological mechanisms of CRSwNP and distinguishing its phenotypes


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Nankun Qin ◽  
Yue Jiang ◽  
Wenjun Shi ◽  
Liting Wang ◽  
Lingbo Kong ◽  
...  

Hyperuricemia (HUA) as a metabolic disease is closely associated with metabolic disorders. The etiology and pathogenesis of HUA are not fully understood, so there is no radical cure so far. Metabolomics, a specialized study of endogenous small molecule substances, has become a powerful tool for metabolic pathway analysis of selected differential metabolites, which is helpful for initially revealing possible development mechanisms of various human diseases. Twenty HUA patients and 20 healthy individuals participated in the experiment, and ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was employed to investigate serum samples to find differential metabolites. The statistical techniques used were principal component analysis and orthogonal partial least-squares discriminant analysis. The differences in metabolomics results of samples after pretreatment with different solvents were compared, 38, 20, 26, 28, 33, 50, and 40 potential differential metabolites were found, respectively, in HUA patient samples, and each group involved different metabolic pathways. Repetitive metabolites were removed, 138 differential metabolites in HUA serum were integrated for analysis, and the human body was affected by 7 metabolic pathways of glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and α-linolenic acid metabolism. In this work, the metabolomics approach based on UPLC-Q-TOF/MS was employed to investigate serum metabolic changes in HUA patients, 138 potential differential metabolites related to HUA were identified, which provided associations of lipids, amino acids, fatty acids, organic acids, and nucleosides profiles of HUA individuals. Metabolic pathways involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and a-linolenic acid metabolism shed light on the understanding of the etiology and pathogenesis process of HUA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huanfang Liu ◽  
Honghua Yang ◽  
Tong Zhao ◽  
Canjia Lin ◽  
Yongqing Li ◽  
...  

Ginger (Zingiber officinale Roscoe) is known for its unique pungent taste and useability in traditional Chinese medicine. The main compounds in ginger rhizome can be classified as gingerols, diarylheptanoids, and volatile oils. The composition and concentrations of the bioactive compounds in ginger rhizome might vary according to the age of the rhizome. In this regard, the knowledge on the transcriptomic signatures and accumulation of metabolites in young (Y), mature (M), and old (O) ginger rhizomes is scarce. This study used HiSeq Illumina Sequencing and UPLC-MS/MS analyses to delineate how the expression of key genes changes in Y, M, and O ginger rhizome tissues and how it affects the accumulation of metabolites in key pathways. The transcriptome sequencing identified 238,157 genes of which 13,976, 11,243, and 24,498 were differentially expressed (DEGs) in Y vs. M, M vs. O, and Y vs. O, respectively. These DEGs were significantly enriched in stilbenoid, diarylheptanoid, and gingerol biosynthesis, phenylpropanoid biosynthesis, plant-hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and α-linoleic acid metabolism pathways. The metabolome profiling identified 661 metabolites of which 311, 386, and 296 metabolites were differentially accumulated in Y vs. M, Y vs. O, and M vs. O, respectively. These metabolites were also enriched in the pathways mentioned above. The DEGs and DAMs enrichment showed that the gingerol content is higher in Y rhizome, whereas the Y, M, and O tissues differ in linoleic and α-linoleic acid accumulation. Similarly, the starch and sucrose metabolism pathway is variably regulated in Y, M, and O rhizome tissues. Our results showed that ginger rhizome growth slows down (Y > M > O) probably due to changes in phytohormone signaling. Young ginger rhizome is the most transcriptionally and metabolically active tissue as compared to M and O. The transitioning from Y to M and O affects the gingerol, sugars, linoleic acid, and α-linoleic acid concentrations and related gene expressions.


Nutrients ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 825 ◽  
Author(s):  
Marija Knez ◽  
James Stangoulis ◽  
Maria Glibetic ◽  
Elad Tako

Sign in / Sign up

Export Citation Format

Share Document