scholarly journals Fault Detection Method and Simulation Based on Abnormal Data Analysis in Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaogang Chen

With the rapid development of Internet of things and information technology, wireless sensor network technology is widely used in industrial monitoring. However, limited by the architecture characteristics, software and hardware characteristics, and complex external environmental factors of wireless sensor networks, there are often serious abnormalities in the monitoring data of wireless sensor networks, which further affect the judgment and response of users. Based on this, this paper optimizes and improves the fault detection algorithm of related abnormal data analysis in wireless sensor networks from two angles and verifies the algorithm at the same time. In the first level, aiming at the problem of insufficient spatial cooperation faced by the network abnormal data detection level, this paper first establishes a stable neighbor screening model based on the wireless network and filters and analyzes the reliability of the network cooperative data nodes and then establishes the detection data stability evaluation model by using the spatiotemporal correlation corresponding to the data nodes. Realize abnormal data detection. On the second level, aiming at the problem of wireless network abnormal event detection, this paper proposes a spatial clustering optimization algorithm, which mainly clusters the detection data flow in the wireless network time window through the clustering algorithm, and analyzes the clustering data, so as to realize the detection of network abnormal events, so as to retain the characteristics of events and further classify the abnormal data events. This paper will verify the realizability and superiority of the improved optimization algorithm through simulation technology. Experiments show that the fault detection rate based on abnormal data analysis is as high as 97%, which is 5% higher than the traditional fault detection rate. At the same time, the corresponding fault false detection rate is low and controlled below 1%. The efficiency of this algorithm is about 10% higher than that of the traditional algorithm.

2012 ◽  
Vol 35 (3) ◽  
pp. 529-539 ◽  
Author(s):  
Yun-Lu LIU ◽  
Ju-Hua PU ◽  
Wei-Wei FANG ◽  
Zhang XIONG

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Huang ◽  
Liqian Xu ◽  
Cong-cong Xing ◽  
Qiang Duan

The design of wireless sensor networks (WSNs) in the Internet of Things (IoT) faces many new challenges that must be addressed through an optimization of multiple design objectives. Therefore, multiobjective optimization is an important research topic in this field. In this paper, we develop a new efficient multiobjective optimization algorithm based on the chaotic ant swarm (CAS). Unlike the ant colony optimization (ACO) algorithm, CAS takes advantage of both the chaotic behavior of a single ant and the self-organization behavior of the ant colony. We first describe the CAS and its nonlinear dynamic model and then extend it to a multiobjective optimizer. Specifically, we first adopt the concepts of “nondominated sorting” and “crowding distance” to allow the algorithm to obtain the true or near optimum. Next, we redefine the rule of “neighbor” selection for each individual (ant) to enable the algorithm to converge and to distribute the solutions evenly. Also, we collect the current best individuals within each generation and employ the “archive-based” approach to expedite the convergence of the algorithm. The numerical experiments show that the proposed algorithm outperforms two leading algorithms on most well-known test instances in terms of Generational Distance, Error Ratio, and Spacing.


Sign in / Sign up

Export Citation Format

Share Document