scholarly journals Image Classification in HTP Test Based on Convolutional Neural Network Model

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lin Liu

HTP test in psychometrics is a widely studied and applied psychological assessment technique. HTP test is a kind of projection test, which refers to the free expression of painting itself and its creativity. Therefore, the form of group psychological counselling is widely used in mental health education. Compared with traditional neural networks, deep learning networks have deeper and more network layers and can learn more complex processing functions. In this stage, image recognition technology can be used as an assistant of human vision. People can quickly get the information in the picture through retrieval. For example, you can take a picture of an object that is difficult to describe and quickly search the content related to it. Convolutional neural network, which is widely used in the image classification task of computer vision, can automatically complete feature learning on the data without manual feature extraction. Compared with the traditional test, the test can reflect the painting characteristics of different groups. After quantitative scoring, it has good reliability and validity. It has high application value in psychological evaluation, especially in the diagnosis of mental diseases. This paper focuses on the subjectivity of HTP evaluation. Convolutional neural network is a mature technology in deep learning. The traditional HTP assessment process relies on the experience of researchers to extract painting features and classification.

2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2021 ◽  
pp. 1-17
Author(s):  
Hania H. Farag ◽  
Lamiaa A. A. Said ◽  
Mohamed R. M. Rizk ◽  
Magdy Abd ElAzim Ahmed

COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jie Shen ◽  
Mengxi Xu ◽  
Xinyu Du ◽  
Yunbo Xiong

Video surveillance is an important data source of urban computing and intelligence. The low resolution of many existing video surveillance devices affects the efficiency of urban computing and intelligence. Therefore, improving the resolution of video surveillance is one of the important tasks of urban computing and intelligence. In this paper, the resolution of video is improved by superresolution reconstruction based on a learning method. Different from the superresolution reconstruction of static images, the superresolution reconstruction of video is characterized by the application of motion information. However, there are few studies in this area so far. Aimed at fully exploring motion information to improve the superresolution of video, this paper proposes a superresolution reconstruction method based on an efficient subpixel convolutional neural network, where the optical flow is introduced in the deep learning network. Fusing the optical flow features between successive frames can compensate for information in frames and generate high-quality superresolution results. In addition, in order to improve the superresolution, a superpixel convolution layer is added after the deep convolution network. Finally, experimental evaluations demonstrate the satisfying performance of our method compared with previous methods and other deep learning networks; our method is more efficient.


2020 ◽  
Vol 12 (12) ◽  
pp. 2033 ◽  
Author(s):  
Xiaofei Yang ◽  
Xiaofeng Zhang ◽  
Yunming Ye ◽  
Raymond Y. K. Lau ◽  
Shijian Lu ◽  
...  

Accurate hyperspectral image classification has been an important yet challenging task for years. With the recent success of deep learning in various tasks, 2-dimensional (2D)/3-dimensional (3D) convolutional neural networks (CNNs) have been exploited to capture spectral or spatial information in hyperspectral images. On the other hand, few approaches make use of both spectral and spatial information simultaneously, which is critical to accurate hyperspectral image classification. This paper presents a novel Synergistic Convolutional Neural Network (SyCNN) for accurate hyperspectral image classification. The SyCNN consists of a hybrid module that combines 2D and 3D CNNs in feature learning and a data interaction module that fuses spectral and spatial hyperspectral information. Additionally, it introduces a 3D attention mechanism before the fully-connected layer which helps filter out interfering features and information effectively. Extensive experiments over three public benchmarking datasets show that our proposed SyCNNs clearly outperform state-of-the-art techniques that use 2D/3D CNNs.


Author(s):  
Vijayaprabakaran K. ◽  
Sathiyamurthy K. ◽  
Ponniamma M.

A typical healthcare application for elderly people involves monitoring daily activities and providing them with assistance. Automatic analysis and classification of an image by the system is difficult compared to human vision. Several challenging problems for activity recognition from the surveillance video involving the complexity of the scene analysis under observations from irregular lighting and low-quality frames. In this article, the authors system use machine learning algorithms to improve the accuracy of activity recognition. Their system presents a convolutional neural network (CNN), a machine learning algorithm being used for image classification. This system aims to recognize and assist human activities for elderly people using input surveillance videos. The RGB image in the dataset used for training purposes which requires more computational power for classification of the image. By using the CNN network for image classification, the authors obtain a 79.94% accuracy in the experimental part which shows their model obtains good accuracy for image classification when compared with other pre-trained models.


Deep learning gives the strength on the way to train algorithms model that can handle the difficulties of info classification also prediction grounded on totally on arising information as of raw information. Convolutional Neural Networks (CNNs) gives single often used method for image classification and detection. In this exertion, we define a CNNbased approach for spotting dogs in per chance complex images and due to this fact reflect inconsideration on the identification of the one of kinds of dog breed. The experimental outcome analysis supported the standard metrics and thus the graphical representation confirms that the algorithm (CNN) gives good analysis accuracy for all the tested datasets


Sign in / Sign up

Export Citation Format

Share Document