Deep Learning in Health Care: Automatic Cervix Image Classification Using Convolutional Neural Network

Author(s):  
Mamta Arora ◽  
Sanjeev Dhawan ◽  
Kulvinder Singh
2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lin Liu

HTP test in psychometrics is a widely studied and applied psychological assessment technique. HTP test is a kind of projection test, which refers to the free expression of painting itself and its creativity. Therefore, the form of group psychological counselling is widely used in mental health education. Compared with traditional neural networks, deep learning networks have deeper and more network layers and can learn more complex processing functions. In this stage, image recognition technology can be used as an assistant of human vision. People can quickly get the information in the picture through retrieval. For example, you can take a picture of an object that is difficult to describe and quickly search the content related to it. Convolutional neural network, which is widely used in the image classification task of computer vision, can automatically complete feature learning on the data without manual feature extraction. Compared with the traditional test, the test can reflect the painting characteristics of different groups. After quantitative scoring, it has good reliability and validity. It has high application value in psychological evaluation, especially in the diagnosis of mental diseases. This paper focuses on the subjectivity of HTP evaluation. Convolutional neural network is a mature technology in deep learning. The traditional HTP assessment process relies on the experience of researchers to extract painting features and classification.


Deep learning gives the strength on the way to train algorithms model that can handle the difficulties of info classification also prediction grounded on totally on arising information as of raw information. Convolutional Neural Networks (CNNs) gives single often used method for image classification and detection. In this exertion, we define a CNNbased approach for spotting dogs in per chance complex images and due to this fact reflect inconsideration on the identification of the one of kinds of dog breed. The experimental outcome analysis supported the standard metrics and thus the graphical representation confirms that the algorithm (CNN) gives good analysis accuracy for all the tested datasets


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 300-306
Author(s):  
Muhamad Jaelani Akbar ◽  
Mochamad Wisuda Sardjono ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Sayuran merupakan sebutan bagi bahan pangan asal tumbuhan yang biasanya mengandung kadar air tinggi dan dikonsumsi dalam keadaan segar atau setelah diolah secara minimal. Keanekaragaman sayur yang terdapat di dunia menyebabkan keragaman pula dalam pengklasifikasian sayur. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali jenis sayuran dengan cepat dan mudah. Dalam penelitian ini jumlah jenis sayuran yang digunakan sebanyak 7 jenis diantara: brokoli, jagung, kacang panjang, pare, terung ungu, tomat dan kubis. Dataset yang digunakan berjumlah 941 gambar sayur dari 7 jenis sayur, ditambah 131 gambar sayur dari jenis yang tidak terdapat pada dataset, selain itu digunakan 291 gambar selain sayuran. Untuk melakukan klasifikasi jenis sayuran digunakan algoritme Convolutional Neural Network (CNN), yang merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan pesat. CNN merupakan salah satu algoritme yang terdapat pada metode Deep Learning dengan memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek citra. Uji coba dilakukan pada lima perangkat selular berbasiskan sistem operasi Android. Python digunakan sebagai bahasa pemrograman dalam merancang aplikasi mobile ini dengan menggunakan modul Tensor flow untuk melakukan training dan testing data. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Hasil final test accuracy yang diperoleh yaitu didapat keakuratan mengenali jenis sayuran sebesar 98.1% dengan salah satu hasil pengujian yaitu klasifikasi sayur jagung dengan akurasi sebesar 99.98049%.


2020 ◽  
Author(s):  
vishal mellahalli siddegowda

Deep learning has come up with the intense class of models which have potential applications in the field of image classification, video recognition, object recognition, natural language Processing and speech recognition. Mainly, Deep convolutional Neural Network is one of the deep learning models that is used for image classification, that extracts the feature from the images and use these extracted features to classify images (2D or 3D images). In this paper, DCNN is used to classify mammogram images obtained from medical imaging process to detect the benign and malignant cells. The outcome of the study is to bring out the idea behind computing techniques incorporated with medical diagnostics, helping medical professional to take advantage of computer aided diagnostics, ultimately improving the time spent by pathologist to inspect the stained tissues in-turn increasing the survival rates.


Sebatik ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Hanissa Anggraini Pratiwi ◽  
Margi Cahyanti ◽  
Missa Lamsani

Bunga atau kembang adalah alat reproduksi seksual pada tumbuhan berbunga. Pada bunga terdapat organ reproduksi, yaitu benang sari dan putik. Pada beberapa spesies, bunga majemuk dapat dianggap awam sebagai bunga (tunggal), ada sekitar 391.000 spesies tanaman vaskular yang saat ini diketahui sains, dimana sekitar 369.000 spesies (atau 94 persen) adalah tanaman berbunga. Klasifikasi jenis bunga merupakan pekerjaan yang membutuhkan waktu dan pengetahuan. Perkembangan visi komputer memungkinkan otomatisasi klasifikasi jenis bunga dengan efisien dan akurat. Deep Learning merupakan cabang ilmu machine learning berbasis Jaringan Saraf Tiruan (JST) atau bisa dikatakan sebagai perkembangan dari JST. Dalam Deep Learning, sebuah komputer belajar mengklasifikasi secara langsung dari gambar atau suara. Dengan menggunakan teknologi Deep Learning yang merupakan salah satu bidang ilmu baru dalam Machine learning dan berkembang dengan sangat pesat. Deep Learning memiliki kemampuan yang baik dalam Computer Vision, yaitu Image Classification atau kalsifikasi objek pada citra dalam bentuk dua dimensi misalnya gambar dan suara. Hasil final test accuracy yang diperoleh yaitu didapat keakuratan sebesar 100% dengan salah satu hasil pengujian yaitu klasifikasi bunga mawar  dengan akurasi sebesar 99,30%. Model data latih menggunakan dengan total dataset 460 gambar (yang diambil melalui pencarian gambar pada Google Image) sebanyak 30 kali dilatih, di mana setiap 13 langkah terhitung 1 training. Sehingga menghasilkan keluaran nilai akurasi dari data yang telah dilatih (val_acc) dan nilai akurasi dari data yang hilang atau miss (val_loss). Diharapkan dengan adanya implementasi aplikasi ini dapat membantu pengguna untuk memelihara bunga hias dengan jenis sesuai dengan keinginan.


2021 ◽  
Vol 8 (6) ◽  
pp. 1293
Author(s):  
Mohammad Farid Naufal ◽  
Selvia Ferdiana Kusuma

<p class="Abstrak">Pada tahun 2021 pandemi Covid-19 masih menjadi masalah di dunia. Protokol kesehatan diperlukan untuk mencegah penyebaran Covid-19. Penggunaan masker wajah adalah salah satu protokol kesehatan yang umum digunakan. Pengecekan secara manual untuk mendeteksi wajah yang tidak menggunakan masker adalah pekerjaan yang lama dan melelahkan. Computer vision merupakan salah satu cabang ilmu komputer yang dapat digunakan untuk klasifikasi citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang memiliki performa bagus dalam klasifikasi citra. Transfer learning merupakan metode terkini untuk mempercepat waktu training pada CNN dan untuk mendapatkan performa klasifikasi yang lebih baik. Penelitian ini melakukan klasifikasi citra wajah untuk membedakan orang menggunakan masker atau tidak dengan menggunakan CNN dan Transfer Learning. Arsitektur CNN yang digunakan dalam penelitian ini adalah MobileNetV2, VGG16, DenseNet201, dan Xception. Berdasarkan hasil uji coba menggunakan 5-cross validation, Xception memiliki akurasi terbaik yaitu 0.988 dengan waktu total komputasi training dan testing sebesar 18274 detik. MobileNetV2 memiliki waktu total komputasi tercepat yaitu 4081 detik dengan akurasi sebesar 0.981.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Judul2"><em>In 2021 the Covid-19 pandemic is still a problem in the world. Therefore, health protocols are needed to prevent the spread of Covid-19. The use of face masks is one of the commonly used health protocols. However, manually checking to detect faces that are not wearing masks is a long and tiring job. Computer vision is a branch of computer science that can be used for image classification. Convolutional Neural Network (CNN) is a deep learning algorithm that has good performance in image classification. Transfer learning is the latest method to speed up CNN training and get better classification performance. This study performs facial image classification to distinguish people using masks or not by using CNN and Transfer Learning. The CNN architecture used in this research is MobileNetV2, VGG16, DenseNet201, and Xception. Based on the results of trials using 5-cross validation, Xception has the best accuracy of 0.988 with a total computation time of training and testing of 18274 seconds. MobileNetV2 has the fastest total computing time of 4081 seconds with an accuracy of 0.981.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


2020 ◽  
Vol 12 (10) ◽  
pp. 1694 ◽  
Author(s):  
Yuwei Guo ◽  
Zhuangzhuang Sun ◽  
Rong Qu ◽  
Licheng Jiao ◽  
Fang Liu ◽  
...  

Recently, deep learning has been highly successful in image classification. Labeling the PolSAR data, however, is time-consuming and laborious and in response semi-supervised deep learning has been increasingly investigated in PolSAR image classification. Semi-supervised deep learning methods for PolSAR image classification can be broadly divided into two categories, namely pixels-based methods and superpixels-based methods. Pixels-based semi-supervised methods are liable to be affected by speckle noises and have a relatively high computational complexity. Superpixels-based methods focus on the superpixels and ignore tiny detail-preserving represented by pixels. In this paper, a Fuzzy superpixels based Semi-supervised Similarity-constrained CNN (FS-SCNN) is proposed. To reduce the effect of speckle noises and preserve the details, FS-SCNN uses a fuzzy superpixels algorithm to segment an image into two parts, superpixels and undetermined pixels. Moreover, the fuzzy superpixels algorithm can also reduce the number of mixed superpixels and improve classification performance. To exploit unlabeled data effectively, we also propose a Similarity-constrained Convolutional Neural Network (SCNN) model to assign pseudo labels to unlabeled data. The final training set consists of the initial labeled data and these pseudo labeled data. Three PolSAR images are used to demonstrate the excellent classification performance of the FS-SCNN method with data of limited labels.


Sign in / Sign up

Export Citation Format

Share Document