scholarly journals Analysis of the Distributed Immune Inspection Equipment Sensor Scheduling Model Based on Adaptive Dynamic Probabilistic Particle Swarm Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yi Zhou ◽  
Weili Xia ◽  
Shengping Peng

Based on the analysis of bacterial parasitic behavior and biological immune mechanism, this paper puts forward the basic idea and implementation method of an embedding adaptive dynamic probabilistic parasitic immune mechanism into a particle swarm optimization algorithm and constructs particle swarm optimization based on an adaptive dynamic probabilistic parasitic immune mechanism algorithm. The specific idea is to use the elite learning mechanism for the parasitic group with a strong parasitic ability to improve the ability of the algorithm to jump out of the local extreme value, and the host will generate acquired immunity against the parasitic behavior of the parasitic group to enhance the diversity of the host population’s particles. Parasitic behavior occurs when the number of times reaches a predetermined algebra. In this paper, an example simulation is carried out for the prescheduling and dynamic scheduling of immune inspection. The effectiveness of prescheduling for immune inspection is verified, and the rules constructed by the adaptive dynamic probability particle swarm algorithm and seven commonly used scheduling rules are tested on two common dynamic events of emergency task insertion and subdistributed immune inspection equipment failure. In contrast, the experimental data was analyzed. From the analysis of experimental results, under the indicator of minimum completion time, the overall performance of the adaptive dynamic probability particle swarm optimization algorithm in 20 emergency task insertion instances and 20 subdistributed immune inspection equipment failure instances is better than that of seven scheduling rules. Therefore, in the two dynamic events of emergency task insertion and subdistributed immune inspection equipment failure, the adaptive dynamic probabilistic particle swarm algorithm proposed in this paper can construct effective scheduling rules for the rescheduling of the system when dynamic events occur and the constructed scheduling. The performance of the rules is better than that of the commonly used scheduling rules. Among the commonly used scheduling rules, the performance of the FIFO scheduling rules is also better. In general, the immune inspection scheduling multiagent system in this paper can complete the prescheduling of immune inspection and process dynamic events of the inspection process and realize the prereactive scheduling of the immune inspection process.

2021 ◽  
pp. 15-27
Author(s):  
Mamdouh Kamaleldin AHMED ◽  
◽  
Mohamed Hassan OSMAN ◽  
Nikolay V. KOROVKIN ◽  
◽  
...  

The penetration of renewable distributed generations (RDGs) such as wind and solar energy into conventional power systems provides many technical and environmental benefits. These benefits include enhancing power system reliability, providing a clean solution to rapidly increasing load demands, reducing power losses, and improving the voltage profile. However, installing these distributed generation (DG) units can cause negative effects if their size and location are not properly determined. Therefore, the optimal location and size of these distributed generations may be obtained to avoid these negative effects. Several conventional and artificial algorithms have been used to find the location and size of RDGs in power systems. Particle swarm optimization (PSO) is one of the most important and widely used techniques. In this paper, a new variant of particle swarm algorithm with nonlinear time varying acceleration coefficients (PSO-NTVAC) is proposed to determine the optimal location and size of multiple DG units for meshed and radial networks. The main objective is to minimize the total active power losses of the system, while satisfying several operating constraints. The proposed methodology was tested using IEEE 14-bus, 30-bus, 57-bus, 33-bus, and 69- bus systems with the change in the number of DG units from 1 to 4 DG units. The result proves that the proposed PSO-NTVAC is more efficient to solve the optimal multiple DGs allocation with minimum power loss and a high convergence rate.


2009 ◽  
Vol 05 (02) ◽  
pp. 487-496 ◽  
Author(s):  
WEI FANG ◽  
JUN SUN ◽  
WENBO XU

Mutation operator is one of the mechanisms of evolutionary algorithms (EAs) and it can provide diversity in the search and help to explore the undiscovered search place. Quantum-behaved particle swarm optimization (QPSO), which is inspired by fundamental theory of PSO algorithm and quantum mechanics, is a novel stochastic searching technique and it may encounter local minima problem when solving multi-modal problems just as that in PSO. A novel mutation mechanism is proposed in this paper to enhance the global search ability of QPSO and a set of different mutation operators is introduced and implemented on the QPSO. Experiments are conducted on several well-known benchmark functions. Experimental results show that QPSO with some of the mutation operators is proven to be statistically significant better than the original QPSO.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Ali R. Guner ◽  
Mehmet Sevkli

A discrete version of particle swarm optimization (DPSO) is employed to solve uncapacitated facility location (UFL) problem which is one of the most widely studied in combinatorial optimization. In addition, a hybrid version with a local search is defined to get more efficient results. The results are compared with a continuous particle swarm optimization (CPSO) algorithm and two other metaheuristics studies, namely, genetic algorithm (GA) and evolutionary simulated annealing (ESA). To make a reasonable comparison, we applied to same benchmark suites that are collected from OR-library. In conclusion, the results showed that DPSO algorithm is slightly better than CPSO algorithm and competitive with GA and ESA.


2021 ◽  
Vol 7 (5) ◽  
pp. 4558-4567
Author(s):  
Wenwen Deng

Objectives: Anti dumping new algorithm is an innovative ability based on the WTO legal system, which has made an important contribution to the economic development of the EU system. Methods: At present, the operation mode of new antidumping algorithm has some defects, such as structure confusion and incomplete system implementation, which affects the development progress of EU economic growth. Results: Based on the above problems, in this paper, particle swarm algorithm is introduced, based on the optimization analysis of the website structure of the new antidumping algorithm, through the independent screening analysis of particle swarm optimization, combining the WTO economy with the EU status theory, Conclusion: the paper obtains the optimized anti-dumping innovation scheme on the basis of particle swarm algorithm analysis, and finally passes the input test. The feasibility of the scheme is established.


2018 ◽  
Vol 10 (12) ◽  
pp. 4445 ◽  
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Baohong Lu ◽  
Changjun Qi

In view of the low efficiency of the particle swarm algorithm under multiple constraints of reservoir optimal operation, this paper introduces a particle swarm algorithm based on strongly constrained space. In the process of particle optimization, the algorithm eliminates the infeasible region that violates the water balance in order to reduce the influence of the unfeasible region on the particle evolution. In order to verify the effectiveness of the algorithm, it is applied to the calculation of reservoir optimal operation. Finally, this method is compared with the calculation results of the dynamic programming (DP) and particle swarm optimization (PSO) algorithm. The results show that: (1) the average computational time of strongly constrained particle swarm optimization (SCPSO) can be thought of as the same as the PSO algorithm and lesser than the DP algorithm under similar optimal value; and (2) the SCPSO algorithm has good performance in terms of finding near-optimal solutions, computational efficiency, and stability of optimization results. SCPSO not only improves the efficiency of particle evolution, but also avoids excessive improvement and affects the computational efficiency of the algorithm, which provides a convenient way for particle swarm optimization in reservoir optimal operation.


Author(s):  
Rongrong Li ◽  
Linrun Qiu ◽  
Dongbo Zhang

In this article, a hierarchical cooperative algorithm based on the genetic algorithm and the particle swarm optimization is proposed that the paper should utilize the global searching ability of genetic algorithm and the fast convergence speed of particle swarm optimization. The proposed algorithm starts from Individual organizational structure of subgroups and takes full advantage of the merits of the particle swarm optimization algorithm and the genetic algorithm (HCGA-PSO). The algorithm uses a layered structure with two layers. The bottom layer is composed of a series of genetic algorithm by subgroup that contributes to the global searching ability of the algorithm. The upper layer is an elite group consisting of the best individuals of each subgroup and the particle swarm algorithm is used to perform precise local search. The experimental results demonstrate that the HCGA-PSO algorithm has better convergence and stronger continuous search capability, which makes it suitable for solving complex optimization problems.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Wang ◽  
Yongqiang Liu

The strengths and weaknesses of correlation algorithm, simulated annealing algorithm, and particle swarm optimization algorithm are studied in this paper. A hybrid optimization algorithm is proposed by drawing upon the three algorithms, and the specific application processes are given. To extract the current fundamental signal, the correlation algorithm is used. To identify the motor dynamic parameter, the filtered stator current signal is simulated using simulated annealing particle swarm algorithm. The simulated annealing particle swarm optimization algorithm effectively incorporates the global optimization ability of simulated annealing algorithm with the fast convergence of particle swarm optimization by comparing the identification results of asynchronous motor with constant torque load and step load.


2011 ◽  
Vol 128-129 ◽  
pp. 113-116 ◽  
Author(s):  
Zhi Biao Shi ◽  
Quan Gang Song ◽  
Ming Zhao Ma

Due to the influence of artificial factor and slow convergence of particle swarm algorithm (PSO) during parameters selection of support vector machine (SVM), this paper proposes a modified particle swarm optimization support vector machine (MPSO-SVM). A Steam turbine vibration fault diagnosis model was established and the failure data was used in fault diagnosis. The results of application show the model can get automatic optimization about the related parameters of support vector machine and achieve the ideal optimal solution globally. MPSO-SVM strategy is feasible and effective compared with traditional particle swarm optimization support vector machine (PSO-SVM) and genetic algorithm support vector machine (GA-SVM).


2013 ◽  
Vol 300-301 ◽  
pp. 659-663
Author(s):  
Xiao Jian Han ◽  
Xiang Fang Ding ◽  
Chun Xiao

How to get the most optimal solution of equipment layout in the aircraft cabin of the limited space is a completely NP problem. The problem is abstracted as three dimensions (3D) layout problem. A co-evolutionary particle swarm optimization with heuristic rules is presented. The cabin is decomposed into several small-scale layout problems. The co-evolutionary framework is adopted, and particle swarm optimization (PSO) and heuristic roles for layout are integrated to solve this problem. Finally, an example is used to verify the feasibility and effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document