scholarly journals Multiposition Rotation Interference Absolute Measurement Method for High-Precision Optical Component Surfaces

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xueliang Zhu ◽  
Fengming Nie ◽  
Bingcai Liu ◽  
Ruikun Liu ◽  
Ailing Tian

Modern optical engineering requires increasingly sophisticated interferometry methods capable of conducting subnanometer scale measurements of the large aperture, high-precision optical component surfaces. However, the accuracy of interferometry measurement is limited to the accuracy with which the surface of the reference mirror employed in the interferometer system is known, and the influence of gravity-induced deformation cannot be ignored. This is addressed in the present work by proposing a three-flat testing method based on multiposition rotation interference absolute surface measurement technology that combines the basic theory of N-position rotation with the separability of surface wavefront functions into sums of even and odd functions. These functions provide the rotational symmetric components of the wavefront, which then enables the absolute surface to be reconstructed based on the N-position rotation measurements. In addition, we propose a mechanical clamping combined with computational method to compensate for the gravity-induced deformations of the flats in the multiposition rotation absolute measurements. The high precision of the proposed absolute surface measurement method is demonstrated via simulations. The results of laboratory experiments indicate that the combination compensation method provides the high-precision surface reconstruction outcomes. The present work provides an important contribution for supporting the interferometry measurement of large aperture, high-precision optical component surfaces.

2020 ◽  
Vol 28 (9) ◽  
pp. 2027-2034
Author(s):  
Yue-jie SHU ◽  
◽  
Jun WU ◽  
Yuan-hang ZHOU ◽  
Yu-feng MA ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3456
Author(s):  
Hyeon-Sang Hwang ◽  
Eui-Chul Lee

Conventional respiration measurement requires a separate device and/or can cause discomfort, so it is difficult to perform routinely, even for patients with respiratory diseases. The development of contactless respiration measurement technology would reduce discomfort and help detect and prevent fatal diseases. Therefore, we propose a respiration measurement method using a learning-based region-of-interest detector and a clustering-based respiration pixel estimation technique. The proposed method consists of a model for classifying whether a pixel conveys respiration information based on its variance and a method for classifying pixels with clear breathing components using the symmetry of the respiration signals. The proposed method was evaluated with the data of 14 men and women acquired in an actual environment, and it was confirmed that the average error was within approximately 0.1 bpm. In addition, a Bland–Altman analysis confirmed that the measurement result had no error bias, and regression analysis confirmed that the correlation of the results with the reference is high. The proposed method, designed to be inexpensive, fast, and robust to noise, is potentially suitable for practical use in clinical scenarios.


2007 ◽  
Vol 364-366 ◽  
pp. 80-85
Author(s):  
Su Ping Chang ◽  
Tie Bang Xie ◽  
Xuang Ze Wang ◽  
Jun Guo

White-light interferometric technique has been widely applied in the measurement of three-dimensional profiles and roughness with high-precision. Based on the characteristic of interferometric technique, a new method combined with image location and a three-dimensional stage is proposed to achieve the non-contact absolute shape measurement for aspheric and spherical surface in a slarge range. The interference fringes vary with the horizontal displacement of the measured surface, the surface information was obtained by locating the transformation of the maximal intensity in the interferograms. Two main influence factors are discussed; they are performance of the inerferimetric microscope and the stage. Since the performance of the stage directly determines the measurement precision, a three-dimensional displacement stage with a large range and a high precision was developed. Some experiments were carried out to verify the performance of the three-dimensional displacement stage and the validity of the new measurement method with satisfactory results.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2251-2254
Author(s):  
Fang Ru Gui

The analysis of the difficulties of structure measurement of a stadium and the application of total station instrument spatial measurement technology specifically solve the control and measurement of the steel structure installation, location survey of the pre component installation, and the technical problems in the process of calibration measurement, which has ensured that the accuracy of the entire steel structure construction.


Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 4837-4840 ◽  
Author(s):  
Zhai Yusheng ◽  
Zhang Zhifeng ◽  
Su Yuling ◽  
Wang Xinjie ◽  
Feng Qibo

Sign in / Sign up

Export Citation Format

Share Document