scholarly journals Fabrication of SiC@Cu/Cu Composites with the Addition of SiC@Cu Powder by Magnetron Sputtering

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhang Yunlong ◽  
Li Wenbo ◽  
Hu Ming ◽  
Yi Hongyong ◽  
Zhou Wei ◽  
...  

In view of the surface engineering application of electrical contact materials, SiC ceramic particles were introduced into copper matrix composites by the hot-press sintering method for the sake of enhancing the service life of copper matrix electrical contact materials. Magnetron sputtering technology was exploited to form the continuous copper film on the β-SiC powders in order to improve interface wettability between SiC powder and copper matrix. The SiC@Cu powders were treated by magnetron sputtering technology. Then, dynamic deposit behavior was described according to SEM results. The phase constitution, fracture morphology, relative density, porosity, Vickers hardness, and coefficient of thermal expansion of SiC@Cu/Cu composites with different SiC@Cu addition were analyzed in detail. The results showed that SiC@Cu powders with higher fraction in the SiC@Cu/Cu composites would decrease relative density and increase porosity, so it resulted in improvement of Vickers hardness. The addition of SiC@Cu decreased CTE values of the SiC@Cu/Cu composite, especially at high-level fraction SiC@Cu powder.

2017 ◽  
Vol 898 ◽  
pp. 984-991 ◽  
Author(s):  
Yi Liu ◽  
Jin Feng Leng ◽  
Zhi Wei Li ◽  
Pei Yu Zhang ◽  
Qiu Rui Wu

Copper matrix composites (CMCs) are widely used in electrical equipment and electrical contact materials due to their excellent electrical properties. Al2O3 powders are widely used as a reinforcing agent to enhance mechanical properties of MMCs. The xAl2O3/Cu (x =0, 0.2, 0.5, 0.7, and 1.0wt. %) composites were prepared via vacuum arc melting method. The mechanical and electrical properties were obtained by measuring the hardness and conductivity. The morphology of copper and Al2O3/Cu composites was characterized by optical microscopy (OM) and scanning electron microscopy (SEM). With the addition of Al2O3 from 0.2 wt. % to 1.0 wt. %, the relative densities of composites decreased from 98.5% to 97.0%. The hardness of the composites increased with increase in the Al2O3 powders content. The hardness of 1.0Al2O3/Cu composites was 57.9 HB, which was higher than that of pure Cu by 18.6%.. With the addition of Al2O3, the IACS% of Al2O3/Cu composites decreased from 88.97 to 86.16.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 498 ◽  
Author(s):  
Mingliang Wu ◽  
Baosen Hou ◽  
Shengcheng Shu ◽  
Ao Li ◽  
Qi Geng ◽  
...  

Copper-based materials are common industrial products which have been broadly applied to the fields of powder metallurgy, electrical contact, and heat exchangers, etc. However, the ease of surface oxidation limits the durability and effectiveness of copper-based components. Here, we have developed a powder metallurgy process to fabricate graphene/copper composites using copper powders which were first deposited with graphene layers by thermal chemical vapor deposition (CVD). The graphene/copper composites embedded with an interconnected graphene network was then able to be obtained by vacuum hot-pressing. After thermal oxidation (up to 220 °C) in humid air for several hours, we found that the degree of surface oxidation of our samples was much less than that of their pure Cu counterpart and our samples produced a much smaller increase of interfacial contact resistance when used as electrical contact materials. As a result, our graphene/copper composites showed a significant enhancement of oxidation resistance ability (≈5.6 times) compared to their pure Cu counterpart, thus offering potential applications as novel electrical contact materials.


2017 ◽  
Vol 114 ◽  
pp. 139-148 ◽  
Author(s):  
Hangyu Li ◽  
Xianhui Wang ◽  
Xiuhua Guo ◽  
Xiaohong Yang ◽  
Shuhua Liang

2018 ◽  
Vol 6 (1) ◽  
pp. 016558 ◽  
Author(s):  
Wang Haitao ◽  
Zhang Mei ◽  
Yang Menglin ◽  
Wang Jingqin ◽  
Zhu Yancai

2013 ◽  
Vol 45 (2) ◽  
pp. 173-180 ◽  
Author(s):  
V. Cosovic ◽  
M. Pavlovic ◽  
A. Cosovic ◽  
P. Vulic ◽  
M. Premovic ◽  
...  

High energy ball milling was used in order to improve dispersion of metal oxide in Ag-SnO2 electrical contact materials. The processed Ag-SnO2 (92:8) and Ag-SnO2In2O3 (87.8:9.30:2.9) powder mixtures were subsequently consolidated to bulk solid pieces by conventional powder metallurgy method. The characterization of the prepared samples included microstructural analysis by XRD and SEM, as well as measurements of physical properties such as density, hardness and electrical conductivity. The results of X-Ray analysis point to reduction of crystallite size after milling of about ten times. Microstructures of sintered Ag-SnO2 and Ag-SnO2 In2O3 materials display very fine dispersion of the oxide components in silver matrix. Somewhat higher uniformity was obtained for Ag-SnO2 In2O3 material which was illustrated by results of SEM analysis and more consistent microhardness values. The obtained values of studied physical properties were found to be in accordance with observed higher dispersion of metal oxide particles and comparable to properties of commercial electrical contact materials of this type.


2014 ◽  
Vol 125 (2) ◽  
pp. 348-352 ◽  
Author(s):  
V. Tsakiris ◽  
M. Lungu ◽  
E. Enescu ◽  
D. Pavelescu ◽  
Gh. Dumitrescu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document