scholarly journals The Construction and Comprehensive Analysis of Inflammation-Related ceRNA Networks and Tissue-Infiltrating Immune Cells in Ulcerative Progression

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jia-Wei Lu ◽  
Aimaier Rouzigu ◽  
Li-Hong Teng ◽  
Wei-Li Liu

Ulcerative colitis (UC) is a common disease with great variability in severity, with a high recurrence rate and heavy disease burden. In recent years, the different biological functions of competing endogenous RNA (ceRNA) networks of long noncoding RNAs (lncRNAs) and microRNAs (miRs) have aroused wide concerns, the ceRNA network of ulcerative colitis (UC) may have potential research value, and these expressed noncoding RNAs may be involved in the molecular basis of inflammation recurrence and progression. This study analyzed 490 colon samples associated with UC from 4 gene expression microarrays from the GEO database and identified gene modules by weighted correlation network analysis (WGCNA). CIBERSORT detected tissue-infiltrating leukocyte profiling by deconvolution of microarray data. LncBase and multiMIR were used to identify lncRNA-miRNA-mRNA interaction. We constructed a ceRNA network which includes 4 lncRNAs (SH3BP5-AS1, MIR4435-2HG, ENTPD1-AS1, and AC007750.1), 5 miRNAs (miR-141-3p, miR-191-5p, miR-192-5p, miR-194-5p, and miR196-5p), and 52 mRNAs. Those genes are involved in interleukin family signals, neutrophil degranulation, adaptive immunity, and cell adhesion pathways. lncRNA MIR4435-2HG is a variable in the decision tree for moderate-to-severe UC diagnostic prediction. Our work identifies potential regulated inflammation-related lncRNA-miRNA-mRNA regulatory axes. The regulatory axes are dysregulated during the deterioration of UC, suggesting that it is a risk factor for UC progression.

2014 ◽  
Vol 32 (1) ◽  
pp. 250-260 ◽  
Author(s):  
ZHAOSHI BAO ◽  
YING FENG ◽  
HONGJUN WANG ◽  
CHUANBAO ZHANG ◽  
LIHUA SUN ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Yang ◽  
Xiao-fan Lu ◽  
Peng-cheng Luo ◽  
Jie Zhang

Background. Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), usually is representative of metastatic heterogeneous neoplasm that links with poor prognosis, but the pathogenesis of ccRCC remains unclear. Currently, numerous evidences prove that long noncoding RNAs (lncRNAs) are considered as competing endogenous RNA (ceRNA) to participate in cellular processes of tumors. Therefore, to investigate the underlying mechanisms of ccRCC, the expression profiles of lncRNAs, miRNAs, and mRNAs were downloaded from the Cancer Genome Atlas (TCGA) database. A total of 1526 differentially expressed lncRNAs (DElncRNAs), 54 DEmiRNAs, and 2352 DEmRNAs were identified. To determine the connection of them, all DElncRNAs were input to the miRcode database. The results indicated that 85 DElncRNAs could connect with 9 DEmiRNAs in relation to our study. Then, databases of TargetScan and miRDB were used to search for targeted genes with reference to DEmiRNAs. The results showed that 203 out of 2352 targeted genes were identified in our TCGA set. Subsequently, ceRNA network was constructed according to Cytoscape and the targeted genes were functionally analyzed to elucidate the mechanisms of DEmRNAs. The results of survival analysis and regression analysis indicated that 6 DElncRNAs named COL18A1-AS1, WT1-AS, LINC00443, TCL6, AL356356.1, and SLC25A5-AS1 were significantly correlative with the clinical traits of ccRCC patients and could be served as predictors for ccRCC. Finally, these findings were validated by quantitative RT-PCR (qRT-PCR). Based on these discoveries, we believe that this identified ceRNA network will provide a novel perspective to elucidate ccRCC pathogenesis.


2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Shi ◽  
Gad Abraham ◽  
Christopher Leckie ◽  
Izhak Haviv ◽  
Adam Kowalczyk

2013 ◽  
Vol 9 (8) ◽  
pp. e1003189 ◽  
Author(s):  
Neta S. Zuckerman ◽  
Yair Noam ◽  
Andrea J. Goldsmith ◽  
Peter P. Lee

2002 ◽  
Vol 21 (1) ◽  
pp. 30-34 ◽  
Author(s):  
A.K. Whitchurch

Sign in / Sign up

Export Citation Format

Share Document