competing endogenous rna
Recently Published Documents


TOTAL DOCUMENTS

669
(FIVE YEARS 467)

H-INDEX

49
(FIVE YEARS 16)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiuqi Chen ◽  
Danhong Wu

Background: Acute ischemic stroke (AIS) is the second leading cause of death and the third leading cause of disability worldwide. Long noncoding RNAs (lncRNAs) are promising biomarkers for the early diagnosis of AIS and closely participate in the mechanism of stroke onset. However, studies focusing on lncRNAs functioning as microRNA (miRNA) sponges to regulate the mRNA expression are rare and superficial.Methods: In this study, we systematically analyzed the expression profiles of lncRNA, mRNA (GSE58294), and miRNA (GSE110993) from the GEO database. Gene ontology (GO) analysis was performed to reveal the functions of differentially expressed genes (DEGs), and we used weighted gene co-expression network analysis (WGCNA) to investigate the relationships between clinical features and expression profiles and the co-expression of miRNA and lncRNA. Finally, we constructed a lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) network with selected DEGs using bioinformatics methods and obtained ROC curves to assess the diagnostic efficacy of differentially expressed lncRNAs (DElncRNAs) and differentially expressed mRNAs (DEmRNAs) in our network. The GSE22255 dataset was used to confirm the diagnostic value of candidate genes.Results: In total, 199 DElncRNAs, 2068 DEmRNAs, and 96 differentially expressed miRNAs were detected. The GO analysis revealed that DEmRNAs primarily participate in neutrophil activation, neutrophil degranulation, vacuolar transport, and lysosomal transport. WGCNA screened out 16 lncRNAs and 195 mRNAs from DEGs, and only eight DElncRNAs maintained an area under the curve higher than 0.9. By investigating the relationships between lncRNAs and mRNAs, a ceRNA network containing three lncRNAs, three miRNAs, and seven mRNAs was constructed. GSE22255 confirmed that RP1-193H18.2 is more advantageous for diagnosing stroke, whereas no mRNA showed realistic diagnostic efficacy.Conclusion: The ceRNA network may broaden our understanding of AIS pathology, and the candidate lncRNA from the ceRNA network is assumed to be a promising therapeutic target and diagnostic biomarker for AIS.


2022 ◽  
Author(s):  
Fang Yang ◽  
Shuquan Li ◽  
Heyun Ruan ◽  
Wei Hou ◽  
Yuling Qiu ◽  
...  

Abstract The involvement of circRNAs in β-thalassemia and their actions on fetal hemoglobin (HbF) is unclear. Here, the circRNAs in β-thalassemia carriers with high HbF levels were comprehensively analyzed in comparison with healthy individuals. Differential expression of 2183 circRNAs was observed and their correlations with hematological parameters were investigated. Down-regulated has-circRNA-100466 had a strong negative correlation with HbF and HbA2. Bioinformatics was employed to construct a has-circRNA-100466‑associated competing endogenous RNA (ceRNA) network with the determination of hub genes and associated miRNAs. In combination with previous reports, the has-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified. The ceRNA network was verified by qRT-PCR on β-thalassemia samples and RNA immunoprecipitation of K562 cell lysates. Has-circRNA-100466, miR-19b-3p, and SOX6 were present together in anti-argonaute 2 immunoprecipitates, indicating involvement with HbF induction. Furthermore, spearman correlation coefficients revealed their significant correlations with HbF. In conclusion, a novel has-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified, providing insight into HbF induction and suggesting targets β-thalassemia treatment.


Author(s):  
Yuxin Lin ◽  
Xin Qi ◽  
Jing Chen ◽  
Bairong Shen

Abstract Background MicroRNAs (miRNAs) are post-transcriptional regulators with the potential as biomarkers for cancer management. Data-driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs and spongers. However, no general rules are discovered for ceRNA network-based biomarker prioritization. Methods and Results In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability in human lncRNA-miRNA-mRNA network was comprehensively analyzed, and the single-line regulatory or competing mode among miRNAs, lncRNAs and mRNAs was characterized and quantified as statistical evidence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of 12 miRNAs as putative biomarkers from metastatic PCa-specific lncRNA-miRNA-mRNA network and nine of them have been previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments demonstrated the power of miR-26b-5p, miR-130a-3p, and miR-363-3p as novel candidates for predicting PCa metastasis. Moreover, PCa-associated pathways such as prostate cancer signaling, ERK/MAPK signaling, and TGF-β signaling were significantly enriched by targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis. Conclusions A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the identified miRNAs.


Author(s):  
Tucheng Huang ◽  
Kangjie Wang ◽  
Yuewei Li ◽  
Yanchen Ye ◽  
Yangxin Chen ◽  
...  

Atheroclerosis refers to a chronic inflammatory disease featured by the accumulation of fibrofatty lesions in the intima of arteries. Cardiovasular events associated with atherosclerosis remain the major causes of mortality worldwide. Recent studies have indicated that ferroptosis, a novel programmed cell death, might participate in the process of atherosclerosis. However, the ferroptosis landscape is still not clear. In this study, 59 genes associated with ferroptosis were ultimately identified in atherosclerosis in the intima. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for functional annotation. Through the construction of protein–protein interaction (PPI) network, five hub genes (TP53, MAPK1, STAT3, HMOX1, and PTGS2) were then validated histologically. The competing endogenous RNA (ceRNA) network of hub genes was ultimately constructed to explore the regulatory mechanism between lncRNAs, miRNAs, and hub genes. The findings provide more insights into the ferroptosis landscape and, potentially, the therapeutic targets of atherosclerosis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Sara Uhan ◽  
Nina Hauptman

Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.


Author(s):  
Minkai Song ◽  
Jiawen Gao ◽  
Tao Yan ◽  
Enguang Bi ◽  
Taixue An ◽  
...  

Circular RNAs (circRNAs) have emerged as important roles in various inflammatory processes of rheumatic diseases. However, their expression profiles and influences in the pathogenesis of ankylosing spondylitis (AS) remain unclear. In this study, we revealed the differential expression profiles of circRNAs in peripheral blood mononuclear cells (PBMCs) in AS by circRNA sequencing. We screened the differentially expressed circRNAs in AS and verified that hsa_circ_0000652 was upregulated and had potential to be a biomarker of progression. Functionally, hsa_circ_0000652 promoted proliferation and cytokine production in macrophages and inhibited apoptosis. Through dual-luciferase assays and RNA pull-down assays, we demonstrated that hsa_circ_0000652 acted as a competing endogenous RNA (ceRNA) by binding with hsa-miR-1179 and regulated OX40L, which is characterized as a co-stimulatory molecule and found to be upregulated in AS patients. As a result, hsa_circ_0000652 aggravated the inflammation in the coculture system containing CD4+ T cells and macrophages via OX40/OX40L interaction. Our findings suggest that hsa_circ_0000652 was upregulated in AS patients and may serve as a pro-inflammatory factor in macrophages and a positive regulator of OX40/OX40L by sponging hsa-miR-1179.


Sign in / Sign up

Export Citation Format

Share Document