scholarly journals A Novel Parameter-Adaptive VMD Method Based on Grey Wolf Optimization with Minimum Average Mutual Information for Incipient Fault Detection

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wang Xu ◽  
Jinfei Hu

Recently, variational mode decomposition (VMD) has attracted wide attention on mechanical vibration signal analysis. However, there are still some dilemmas in the application of VMD, such as the determination of the number of mode decomposition K and quadratic penalty term α. In order to acquire appropriate parameters of VMD, an improved parameter-adaptive VMD method based on grey wolf optimizer (GWO) is developed by taking the minimum average mutual information into consideration (GWOMI). Firstly, the parameters (K, α) are adaptively determined through GWOMI. Then, the vibration signal is decomposed by the developed method and effective modes are extracted according to the maximum kurtosis. Finally, the extracted modes are processed by Hilbert envelope analysis to acquire the incipient fault features. With the simulation and experimental analysis, it is clearly found that the developed method is effective and performs better than some existing ones.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Heng-di Wang ◽  
Si-er Deng ◽  
Jian-xi Yang ◽  
Hui Liao ◽  
Wen-bo Li

In view of the incipient fault characteristics are difficult to be extracted from the raw bearing fault signals, an incipient bearing fault diagnosis method based on parameter-adaptive variational mode decomposition (VMD) is proposed. The beetle antennae search (BAS) algorithm is adopted to seek for the optimal combination of the VMD parameters. The reciprocals of the calculated kurtosis values of intrinsic mode functions (IMFs) decomposed via VMD are employed as a fitness function in the searching process. The optimal mode number and the quadratic penalty term of VMD are adaptively set after the search. Afterwards, a vibration signal is decomposed into a set of IMFs using the parameter-adaptive VMD, and the IMF with the maximal kurtosis value is selected as the sensitive one. The selected IMF is further analyzed by Hilbert envelope demodulation. The resulting envelope spectrum can show the significant fault impulse characteristics which are highly helpful to diagnose incipient bearing faults. The kurtosis and the proportion of fault energy are introduced as the input vector of the extreme learning machine (ELM). Comparisons have been conducted via ELM to evaluate the performance by using EMD and the fixed-parameter VMD. The experimental results demonstrate that the proposed method is more effective in extracting the incipient bearing fault characteristics.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 422 ◽  
Author(s):  
Bing Zeng ◽  
Jiang Guo ◽  
Fangqing Zhang ◽  
Wenqiang Zhu ◽  
Zhihuai Xiao ◽  
...  

Oil-immersed transformer is one of the most important components in the power system. The dissolved gas concentration prediction in oil is vital for early incipient fault detection of transformer. In this paper, a model for predicting the dissolved gas concentration in power transformer based on the modified grey wolf optimizer and least squares support vector machine (MGWO-LSSVM) with grey relational analysis (GRA) and empirical mode decomposition (EMD) is proposed, in which the influence of transformer load, oil temperature and ambient temperature on gas concentration is taken into consideration. Firstly, GRA is used to analyze the correlation between dissolved gas concentration and transformer load, oil temperature and ambient temperature, and the optimal feature set affecting gas concentration is extracted and selected as the input of the prediction model. Then, EMD is used to decompose the non-stationary series data of dissolved gas concentration into stationary subsequences with different scales. Finally, the MGWO-LSSVM is used to predict each subsequence, and the prediction values of all subsequences are combined to get the final result. DGA samples from two transformers are used to verify the proposed method, which shows high prediction accuracy, stronger generalization ability and robustness by comparing with LSSVM, particle swarm optimization (PSO)-LSSVM, GWO-LSSVM, MGWO-LSSVM, EMD-PSO-LSSVM, EMD-GWO-LSSVM, EMD-MGWO-LSSVM, GRA-EMD-PSO-LSSVM and GRA-EMD-GWO-LSSVM.


Author(s):  
Mousa Rezaee ◽  
Amin Taraghi Osguei

In this paper, the empirical mode decomposition as a signal processing method has been studied to overcome one of its shortcomings. In the previous studies, some improvements have been made on the empirical mode decomposition and it has been applied for condition monitoring of mechanical systems. These improvements include elimination of mode mixing and restraining of end effect in empirical mode decomposition method. In this research, to increase the accuracy of empirical mode decomposition, a new local mean has been proposed in the sifting process. Through the proposed local mean, the overshoot and undershoot problems in defining the local mean of common algorithm are alleviated. Meanwhile, it is capable to separate the components with close frequencies. Through the analysis of simulated signals via the new algorithm, it is shown that the accuracy is improved. Finally, empirical mode decomposition-based fault diagnosis approach has been applied to a vibration signal obtained from a faulty gearbox. The results show that the proposed method can resolve the effects of damage in vibration signals better than the common empirical mode decomposition method and helps for the isolation and localization of the fault.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Wenlong Fu ◽  
Kai Wang ◽  
Jiawen Tan ◽  
Kaixuan Shao

Accurate vibrational tendency forecasting of hydropower generator unit (HGU) is of great significance to guarantee the safe and economic operation of hydropower station. For this purpose, a novel hybrid approach combined with multiscale dominant ingredient chaotic analysis, kernel extreme learning machine (KELM), and adaptive mutation grey wolf optimizer (AMGWO) is proposed. Among the methods, variational mode decomposition (VMD), phase space reconstruction (PSR), and singular spectrum analysis (SSA) are suitably integrated into the proposed analysis strategy. First of all, VMD is employed to decompose the monitored vibrational signal into several subseries with various frequency scales. Then, SSA is applied to divide each decomposed subseries into dominant and residuary ingredients, after which an additional forecasting component is calculated by integrating the residual of VMD with all the residuary ingredients orderly. Subsequently, the proposed AMGWO is implemented to simultaneously adapt the intrinsic parameters in PSR and KELM for all the forecasting components. Ultimately, the prediction results of the raw vibration signal are obtained by assembling the results of all the predicted prediction components. Furthermore, six relevant contrastive models are adopted to verify the feasibility and availability of the modified strategies employed in the proposed model. The experimental results illustrate that (1) VMD plays a positive role for the prediction accuracy promotion; (2) the proposed dominant ingredient chaotic analysis based on the realization of time-frequency decomposition can further enhance the capability of the forecasting model; and (3) the appropriate parameters for each forecasting component can be optimized by the proposed AMGWO effectively, which can contribute to elevating the forecasting performance distinctly.


Entropy ◽  
2017 ◽  
Vol 19 (8) ◽  
pp. 421 ◽  
Author(s):  
Qing Li ◽  
Steven Liang

The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse extraction methodology is proposed based on impulse-step dictionary and re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq, q = 0.5) for the incipient fault diagnosis of rolling bearings. Prior to the sparse representation, the original vibration signal is preprocessed by the variational mode decomposition (VMD) technique. Due to the physical mechanism of periodic double impacts, including step-like and impulse-like impacts, an impulse-step impact dictionary atom could be designed to match the natural waveform structure of vibration signals. On the other hand, the traditional sparse reconstruction approaches such as orthogonal matching pursuit (OMP), L1-norm regularization treat all vibration signal values equally and thus ignore the fact that the vibration peak value may have more useful information about periodical transient impulses and should be preserved at a larger weight value. Therefore, penalty and smoothing parameters are introduced on the reconstructed model to guarantee the reasonable distribution consistence of peak vibration values. Lastly, the proposed technique is applied to accelerated lifetime testing of rolling bearings, where it achieves a more noticeable and higher diagnostic accuracy compared with OMP, L1-norm regularization and traditional spectral Kurtogram (SK) method.


2012 ◽  
Vol 542-543 ◽  
pp. 234-237
Author(s):  
Ping Wang ◽  
De Xiang Zhang ◽  
Yan Li Liu

This paper applies the empirical mode decomposition (EMD) methods to gearbox vibration signal analysis capture from vibrating acceleration sensor for gearbox fault diagnosis. The original modulation fault vibration signals are firstly decomposed into a number of intrinsic mode function (IMF) by the EMD method. Then the fault information diagnosis of the gearbox vibration signals can be extracted from the coefficient-energy value of intrinsic mode function. Experiment result has shown the feasibility and efficiency of the EMD algorithms and energy characteristic method in fault diagnosis and fault message abstraction. It is significant for the monitor operating state of gearbox and detects incipient faults as soon as possible.


2011 ◽  
Vol 199-200 ◽  
pp. 899-904 ◽  
Author(s):  
Zhen Nan Han ◽  
Jian Xin Gao

A new method for gear local fault diagnosis based on vibration signal analysis is presented in this paper by using the concept of instantaneous frequency. The data from the physical simulation are used to detect the change in the instantaneous frequency and meshing vibration energy of the gear tooth fault by Empirical Mode Decomposition and Hilbert Huang Transformation (EMD-HHT). It is verified that method is effective by rig testing of geared system.


2014 ◽  
Vol 909 ◽  
pp. 121-126 ◽  
Author(s):  
Jiang Ping Wang ◽  
Jin Cui

Hilbert-Huang transform is a new method of signal processing, which is very suitable for dealing with nonlinear and non-stationary signal. In this article, a gear fault diagnosis method based on Hilbert marginal spectrum is proposed in view of the non-stationary characteristics of gear vibration signal. First the original vibration signal is decomposed into several intrinsic mode functions (IMF) of different characteristic time scale smoothly by means of empirical mode decomposition (EMD) method. Then the Hilbert-Huang transform is carried out for IMF and the Hilbert marginal spectrum under different operating conditions are obtained. Gear faults can be judged through the analysis of the marginal spectrum. The experimental results show that this method can effectively diagnose the gear faults.


Sign in / Sign up

Export Citation Format

Share Document