scholarly journals Determination of the Temperature-Dependent Thermal Material Properties in the Cooling Process of Steel Plates

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dimitri Rothermel ◽  
Thomas Schuster ◽  
Roland Schorr ◽  
Martin Peglow

Accelerated cooling (ACC) is a key technology in producing thermomechanically controlled processed (TMCP) steel plates. In a TMCP process, hot plates are subjected to a strong cooling resulting in a complex microstructure leading to increased strength and fracture toughness. The microstructure, residual stresses, and flatness deformations are strongly affected by the temperature evolution during the cooling process. Therefore, the full control (quantification) of the temperature evolution is essential regarding plate design and processing. It can only be achieved by a thermophysical characterization of the material and the cooling system. In this paper, the focus is on the thermophysical characterization of the material properties which govern the heat conduction behavior inside of the plates. Mathematically, this work considers a specific inverse heat conduction problem (IHCP) utilizing inner temperature measurements. The temperature evolution of a heated steel plate passing through the cooling device is modeled by a 1D nonlinear partial differential equation with temperature-dependent material parameters which describe the characteristics of the underlying material. Usually, the material parameters considered in IHCPs are often defined as functions of the space and/or time variables only. Since the measured data (the effect) and the unknown material properties (the cause) depend on temperature, the cause-to-effect relationship cannot be decoupled. Hence, the parameter-to-solution operator can only be defined implicitly. By proposing a parametrization approach via piecewise interpolation, this problem can be resolved. Lastly, using simulated measurement data, the presentation of the numerical procedure shows the ability to identify the material parameters (up to some canonical ambiguity) without any a priori information.




2014 ◽  
Vol 1038 ◽  
pp. 63-68 ◽  
Author(s):  
Quang Huy Dao ◽  
Aline Friedrich ◽  
Bernd Geck

This paper presents results of the research project: "Characterization of the radio frequency (RF) properties of LDS-MID" where RF parameters of laser direct structureable (LDS) molded interconnect device (MID) materials were investigated. First of all the most important material parameters influencing the RF performance of a device are introduced. In the next section the broadband characterization of the metallization and material properties using a coplanar waveguide (CPW) is described. For a selected LDS material the conduction losses due to different metallization compositions are discussed in detail.





2015 ◽  
Author(s):  
Tobias Laumer ◽  
Thomas Stichel ◽  
Thomas Bock ◽  
Philipp Amend ◽  
Michael Schmidt


2000 ◽  
Vol 123 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Lars Bo¨rjesson ◽  
Lars-Erik Lindgren

Multipass butt welding of two 0.2 m thick steel plates has been investigated. The objective is to calculate residual stresses and compare them with measured residual stresses. The material properties depend on temperature and temperature history. This dependency is accounted for by computing the microstructure evolution and using this information for computing material properties. This is done by assigning temperature dependent material properties to each phase and applying mixture rules to predict macro material properties. Two different materials have been used for the microstructure calculation, one for the base material and one for the filler material.



Sign in / Sign up

Export Citation Format

Share Document