Characterization of Electromagnetic Properties of MID Materials for High Frequency Applications up to 67 GHz

2014 ◽  
Vol 1038 ◽  
pp. 63-68 ◽  
Author(s):  
Quang Huy Dao ◽  
Aline Friedrich ◽  
Bernd Geck

This paper presents results of the research project: "Characterization of the radio frequency (RF) properties of LDS-MID" where RF parameters of laser direct structureable (LDS) molded interconnect device (MID) materials were investigated. First of all the most important material parameters influencing the RF performance of a device are introduced. In the next section the broadband characterization of the metallization and material properties using a coplanar waveguide (CPW) is described. For a selected LDS material the conduction losses due to different metallization compositions are discussed in detail.

2015 ◽  
Vol 107 (9) ◽  
pp. 092904 ◽  
Author(s):  
Samuel Baron ◽  
Kevin Nadaud ◽  
Benoit Guiffard ◽  
Ala Sharaiha ◽  
Laurence Seveyrat

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dimitri Rothermel ◽  
Thomas Schuster ◽  
Roland Schorr ◽  
Martin Peglow

Accelerated cooling (ACC) is a key technology in producing thermomechanically controlled processed (TMCP) steel plates. In a TMCP process, hot plates are subjected to a strong cooling resulting in a complex microstructure leading to increased strength and fracture toughness. The microstructure, residual stresses, and flatness deformations are strongly affected by the temperature evolution during the cooling process. Therefore, the full control (quantification) of the temperature evolution is essential regarding plate design and processing. It can only be achieved by a thermophysical characterization of the material and the cooling system. In this paper, the focus is on the thermophysical characterization of the material properties which govern the heat conduction behavior inside of the plates. Mathematically, this work considers a specific inverse heat conduction problem (IHCP) utilizing inner temperature measurements. The temperature evolution of a heated steel plate passing through the cooling device is modeled by a 1D nonlinear partial differential equation with temperature-dependent material parameters which describe the characteristics of the underlying material. Usually, the material parameters considered in IHCPs are often defined as functions of the space and/or time variables only. Since the measured data (the effect) and the unknown material properties (the cause) depend on temperature, the cause-to-effect relationship cannot be decoupled. Hence, the parameter-to-solution operator can only be defined implicitly. By proposing a parametrization approach via piecewise interpolation, this problem can be resolved. Lastly, using simulated measurement data, the presentation of the numerical procedure shows the ability to identify the material parameters (up to some canonical ambiguity) without any a priori information.


Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


2010 ◽  
Vol 31 (3) ◽  
pp. 353-359
Author(s):  
Xiaoyan CHAI ◽  
Shuyong SHANG ◽  
Gaihuan LIU ◽  
Xumei TAO ◽  
Xiang LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document