scholarly journals Polynomials and General Degree-Based Topological Indices of Generalized Sierpinski Networks

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chengmei Fan ◽  
M. Mobeen Munir ◽  
Zafar Hussain ◽  
Muhammad Athar ◽  
Jia-Bao Liu

Sierpinski networks are networks of fractal nature having several applications in computer science, music, chemistry, and mathematics. These networks are commonly used in chaos, fractals, recursive sequences, and complex systems. In this article, we compute various connectivity polynomials such as M -polynomial, Zagreb polynomials, and forgotten polynomial of generalized Sierpinski networks S k n and recover some well-known degree-based topological indices from these. We also compute the most general Zagreb index known as α , β -Zagreb index and several other general indices of similar nature for this network. Our results are the natural generalizations of already available results for particular classes of such type of networks.

2018 ◽  
Vol 74 (1-2) ◽  
pp. 35-43
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui ◽  
Najma Abdul Rehman ◽  
Mehwish Hussain Muhammad

Abstract Dendrimers are large and complex molecules with very well defined chemical structures. More importantly, dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core. Topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity relationships. These topological indices correlate certain physico-chemical properties such as the boiling point, stability, strain energy, and others, of chemical compounds. In this article, we determine hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for hetrofunctional dendrimers, triangular benzenoids, and nanocones.


2021 ◽  
Vol 30 (2) ◽  
pp. 9-21
Author(s):  
A. I. Chuchalin

It is proposed to adapt the new version of the internationally recognized standards for engineering education the Core CDIO Standards 3.0 to the programs of basic higher education in the field of technology, natural and applied sciences, as well as mathematics and computer science in the context of the evolution of STEM. The adaptation of the CDIO standards to STEM higher education creates incentives and contributes to the systematic training of specialists of different professions for coordinated teamwork in the development of high-tech products, as well as in the provision of comprehensive STEM services. Optional CDIO Standards are analyzed, which can be used selectively in STEM higher education. Adaptation of the CDIO-FCDI-FFCD triad to undergraduate, graduate and postgraduate studies in the field of science, technology, engineering and mathematics is considered as a mean for improving the system of three-cycle STEM higher education.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Asad Ali ◽  
Muhammad Shoaib Sardar ◽  
Imran Siddique ◽  
Dalal Alrowaili

A measurement of the molecular topology of graphs is known as a topological index, and several physical and chemical properties such as heat formation, boiling point, vaporization, enthalpy, and entropy are used to characterize them. Graph theory is useful in evaluating the relationship between various topological indices of some graphs derived by applying certain graph operations. Graph operations play an important role in many applications of graph theory because many big graphs can be obtained from small graphs. Here, we discuss two graph operations, i.e., double graph and strong double graph. In this article, we will compute the topological indices such as geometric arithmetic index GA , atom bond connectivity index ABC , forgotten index F , inverse sum indeg index ISI , general inverse sum indeg index ISI α , β , first multiplicative-Zagreb index PM 1   and second multiplicative-Zagreb index PM 2 , fifth geometric arithmetic index GA 5 , fourth atom bond connectivity index ABC 4 of double graph, and strong double graph of Dutch Windmill graph D 3 p .


1970 ◽  
Vol 9 (1) ◽  
pp. 203-216
Author(s):  
Robert Janusz

The article is about an interaction between philosophy and informatics. The discussion is based on a complex example - a country, which has an evolving domain. In contemporary computer science very complex systems are modeled. However it would be impossible to model such systems with every detail, because it would be too difficult, it would be as complex as the reality itself. Frequently complex domains don't have an exact description of their behavior: some have an inadequate description, some have a contradictory one. To model such complex domains a computer science specialist acts like a philosopher: makes classifications, explanations, etc. On the other hand there have to be some philosophical presuppositions - a conviction that a logical analysis and design will work in the domain being modeled: a postulate is introduced that logos is able to capture-in the reality. The descriptions are continuously purified from irrational influences.


2020 ◽  
Author(s):  
Angelicque Tucker Blackmon ◽  

This report is an analysis of college chemistry, biology, computer science, and mathematics students' perceptions of STEM self-efficacy and study skills before and after an intervention.


Author(s):  
Thiago Schumacher Barcelos ◽  
Ismar Frango Silveira

On the one hand, ensuring that students archive adequate levels of Mathematical knowledge by the time they finish basic education is a challenge for the educational systems in several countries. On the other hand, the pervasiveness of computer-based devices in everyday situations poses a fundamental question about Computer Science being part of those known as basic sciences. The development of Computer Science (CS) is historically related to Mathematics; however, CS is said to have singular reasoning mechanics for problem solving, whose applications go beyond the frontiers of Computing itself. These problem-solving skills have been defined as Computational Thinking skills. In this chapter, the possible relationships between Math and Computational Thinking skills are discussed in the perspective of national curriculum guidelines for Mathematics of Brazil, Chile, and United States. Three skills that can be jointly developed by both areas are identified in a literature review. Some challenges and implications for educational research and practice are also discussed.


2018 ◽  
Vol 34 (4) ◽  
pp. 1842-1846
Author(s):  
Anjusha Asok ◽  
Joseph Varghese Kureethara

The QSPR analysis provides a significant structural insight into the physiochemical properties of Butane derivatives. We study some physiochemical properties of fourteen Butane derivatives and develop a QSPR model using four topological indices and Butane derivatives. Here we analyze how closely the topological indices are related to the physiochemical properties of Butane derivatives. For this we compute analytically the topological indices of Butane derivatives and plot the graphs between each of these topological indices to the properties of Butane derivatives using Origin. This QSPR model exhibits a close correlation between Heavy atomic count, Complexity, Hydrogen bond acceptor count, and Surface tension of Butane derivatives with the Redefined first Zagreb index, the Redefined third Zagreb index, the Sum connectivity index and the Reformulated first Zagreb index, respectively.


Sign in / Sign up

Export Citation Format

Share Document