scholarly journals A Cooperative Intermodal Transportation Network Flow Control Method Based on Model Predictive Control

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuankai Huang ◽  
Qicai Zhou ◽  
Xiaolei Xiong ◽  
Jiong Zhao

With the development of information technology, intermodal transport research pays more attention to dynamic optimization and multi-role cooperation. The core issue of this paper was to realize container routing with dynamic adjustment, real-time optimization, and multi-role cooperation characteristics in the intermodal transport network. This paper first introduces the Intermodal Transport Cooperation Protocol (ITCP) that describes the operation and analysis of intermodal transport systems with the concept of encapsulation and layering. Then, a new network flow control method was built based on Model Predictive Control (MPC) in the ITCP framework. The method takes real-time information from all ITCP layers as input and generates flow control decisions for containers. To evaluate the method’s effectiveness, a discrete event simulation experiment is applied. The results show that the proposed method outperforms the all-or-nothing method in scenarios with high freight volume, which means the method proposed in this paper can effectively balance the network transport load and reduce network operating costs. The research of this paper may throw some new light on intermodal transport research from the perspectives of digitization, multi-role cooperation, dynamic optimization, and system standardization.

2019 ◽  
Vol 9 (13) ◽  
pp. 2649 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

At present, many path tracking controllers are unable to actively adjust the longitudinal velocity according to path information, such as the radius of the curve, to further improve tracking accuracy. For this problem, we propose a new path tracking framework based on model predictive control (MPC). This is a multilayer control system that includes three path tracking controllers with fixed velocities and a velocity decision controller. This new control method is named multilayer MPC. This new control method is compared to other control methods through simulation. In this paper, the maximum values of the displacement error and the heading error of multilayer MPC are 92.92% and 77.02%, respectively, smaller than those of nonlinear MPC. The real-time performance of multilayer MPC is very good, and parallel computation can further improve the real-time performance of this control method. In simulation results, the calculation time of multilayer MPC in each control period does not exceed 0.0130 s, which is much smaller than the control period. In addition, when the error of positioning systems is at the centimeter level, the performance of multilayer MPC is still good.


Sign in / Sign up

Export Citation Format

Share Document