scholarly journals Fracture Propagation and Hydraulic Properties of a Coal Floor Subjected to Thick-Seam Longwalling above a Highly Confined Aquifer

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shaodong Li ◽  
Gangwei Fan ◽  
Dongsheng Zhang ◽  
Shizhong Zhang ◽  
Liang Chen ◽  
...  

The high-pressure and water-rich confined aquifer occurring in the Ordovician limestone sequence poses great threats to the routine production of underground longwall mining. Considering the intense cooperation of mining disturbance and water pressure, water-conducting fractures within a coal seam floor can connect the lower aquifer and upper goaf, and this hydraulic behavior is considered the root of water inrush hazard and water loss or contamination. In this paper, the panel 4301 of the Longquan coal mine serves as the case where the panel works closely above the floor with high water pressure. By the combination of physical and numerical modelling approaches, the variation characteristics of fracture development and volumetric strain of floor rocks subjected to mining disturbance are analyzed. A numerical computation model is constructed based on the volumetric strain-permeability equation obtained by curve fitting, and on such basis, the impacts of different mining parameters on floor rock permeability are studied. The results show that the floor rocks experience fracture generation, extension, and convergence procedures as the workface advances along the longitudinal direction, and fractures appearing in front of the workface are more developed. In the whole process of coal seam extraction, the volumetric strain profile exhibits “Λ” shape and an inverted saddle shape before and after overburden strata collapse. By controlling a single variable, the paper reveals that panel height is of greater impact on floor permeability changes than panel length and panel width.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lingzhi Sun ◽  
Yunyue Xie ◽  
Hongtian Xiao

This paper predicts the possibility of water inrush from a confined aquifer under the action of mining activities and water pressure. The study uses numerical analyses to evaluate stress redistribution and crack growth which result from coal extraction operations. Two models are presented in this study. By simplifying the distribution of the disturbed vertical stress on the coal seam and floor around a working face, a model is established to analyze the additional stresses in the floor strata induced by mining activities. And some distribution features of all the additional stress components are described. By using the superposition principle in fracture mechanics, another model is developed to analyze the crack growth in the floor strata under the action of disturbed stresses and water pressure. And the stress intensity factors at the crack tip are presented and the process of crack growth is obtained in the advancement of a working face. Because of discretizing only loading areas and crack surfaces, the present methods can obtain the accurate numerical results. Finally, some suggestions are made for preventing the water inrush from a confined aquifer.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Sun ◽  
Lianguo Wang ◽  
Guangming Zhao

Secondary development of FLAC3D software was carried out based on FISH language, and a 3D fluid-solid coupling numerical calculation model was established for an inclined seam mining above a confined aquifer in Taoyuan Coal Mine. A simulation study was implemented on the mining failure depth of an inclined coal seam floor, conducting height of confined water, and the position of workface floor with easy water inrush during advancement of workface. Results indicated that, during the advancement of the inclined coal seam’s workface, obvious equivalent stress concentration areas existed in the floor strata, and the largest equivalent stress concentration area was located at the low region of workface floor. When the inclined coal seam workface advanced to about 80 m, the depth of floor plastic failure zone reached the maximum at approximately 15.0 m, and the maximum failure depth was located at the low region of the workface floor. Before the inclined workface mining, original confined water conducting existed on the top interface of the confined aquifer. The conducting height of the confined water reached the maximum at about 11.0 m when the workface was pushed forward from an open-off cut at about 80 m. Owing to the barrier effect of the “soft-hard-soft” compound water-resistant strata of the workface floor, pore water pressure and its seepage velocity in the floor strata were unchanged after the workface advanced to about 80 m. After the strata parameters at the workface floor were changed, pore water pressure of the confined water could pass through the lower region of the inclined workface floor strata and break through the barrier of the “soft-hard-soft” compound water-resistant strata of the workface floor and into the mining workface, resulting in the inclined coal seam floor water inrush. Results of this study can provide a basis for predicting, preventing, and governing the inclined coal seam floor water inrush above confined aquifer.


2013 ◽  
Vol 734-737 ◽  
pp. 854-857
Author(s):  
Cheng Fan ◽  
Xue Qing Jing

According to Yang Zhuang coal mine engineering background and the actual situation, reasonable to determine the test site and experimental programs in this paper, and detailed description of the test method, and the final analysis of the coal seam floor water blocking capability, The results show that In low water pressure, the pressure of injection water in the hole with the water in the aperture of little contact, and in high water pressure will produce a good hydraulic connection. The study provides a theoretical foundation and scientific basis for the actual engineering improves safety.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jinghui Zhai ◽  
Danlong Liu ◽  
Gang Li ◽  
Fangtian Wang

In longwall mining, the risk of water inrushes from the floors of deeply buried coal seams is closely related to the degree and depth of the destruction for the mining floor. To analyze the main factors affecting floor failure and the evolution of such failures, this study considered the LW2703 working face of the Chengjiao Coal Mine in China, which is characterized by a large buried depth, complex fault structure, and high pressure from a confined aquifer. The characteristics affecting floor crack development depth were analyzed by considering friction angle, cohesion force, floor pressure, stress increase coefficient, and peak position. A FLAC3D simulation was performed to compare the degrees of floor damage that occurred for caving and backfilling methods during the mining process. High-density electrical detection was performed on-site and used to (1) determine the maximum depth range of the floor damage, (2) reveal the laws governing the evolution of damage in a mining floor, and (3) provide a reasonable basis for evaluating and preventing floor water inrush accidents.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yaru Guo ◽  
Shuning Dong ◽  
Yonghong Hao ◽  
Zaibin Liu ◽  
Tian-Chyi Jim Yeh ◽  
...  

With the increase in depth of coal mining, the hydrogeological complexity largely increases and water inrush accidents happen more frequently. For the safety of coal mining, horizontal directional drilling and grouting techniques have been implemented to detect and plug the fractures and conduits that deliver high-pressure groundwater to coal mine. Taking the grouting engineering performed at Xingdong coal mine at 980 m below sea level as an example, we collected the data of grouting quantity, the loss of drilling fluid, gamma value, water temperature, average water absorption, distance between grouting loss points, water pressure on coal seam floor, and aquifuge thickness at 90 boreholes in the mine to conduct grey relational analysis, first. The analysis showed that the grouting quantity was highly correlated with all other factors. Subsequently, grey system evaluation was used to evaluate the risk of water inrush from the coal seam floor. The results of risk analysis illustrated that three water inrushes from Ordovician limestone occurred in mining face 2127, 2125, and 2222 in the study area were all located in the area with a risk score higher than 65. Through grouting, the identified cracks were effectively blocked and waterproof layers beneath the coal seam floors were constructed to reduce the threat of water inrush. By comparing the risk assessment results with three water inrush cases before grouting operation, we found that water inrush areas were consistent with the area of higher risk.


2012 ◽  
Vol 616-618 ◽  
pp. 267-271
Author(s):  
Jian Jun Shen ◽  
Wei Tao Liu ◽  
Yun Juan Liu

Mine water accident due to the mining above confined water is one of the main factors which affects and threatens safety in the coal production, especially for deep mine. Finding out the mine hydrogeological conditions, deepening the research of water inrush mechanism, and taking the effective safety measures of water bursting prevention, are all the key issues of mining under water pressure safely. Based on fractured rock mass equivalent continuum theory, according to drilling imaging method and water pressure test in borehole, in this paper we focus on discussing the water inrush of the floor rock , determining the floor rock permeability tensor with correction method and simulating the floor inrush problem by coupling stress field and seepage field theory and using anisotropic seepage model with FLAC3D. The results show that, the depth of destroyed floor in normal area and fractured zone in fault are about 30m and 58m respectively. According to empirical equation and numerical simulation, we get the results that the effective protection layer thicknesses are 82m and 115m respectively, and it has presented dangers in fault fractured zone based on the water bursting coefficient method.


2012 ◽  
Vol 518-523 ◽  
pp. 4283-4287 ◽  
Author(s):  
Pu Shan Li ◽  
Li Li A ◽  
Xin Yi Wang

To solve water disasters of coal seam bottom in the 8th coal mine, with the analysis on the bottom aquifer characteristics, the water inrush coefficient method was applied to evaluate the dangers of the aquifer floor and to the dangers division of water inrush. In combination with the karst fracture development conditions of the aquifer, we designed the water prevention and control plan of the limestone water under the seam floor. All the schemes set the basis for the mine safety production.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ming Sun ◽  
Chen Guo ◽  
Wenxiang Zheng ◽  
Huiqiang Duan

As the dangerous level of floor water inrush in Chinese coal field is becoming more and more serious annually, the widely used formulas of broken floor rock mass are belonged to nonlinear type or empirical type. However, they are not well conformed to the practical situation and including mining underground pressure. The biggest depth of broken floor rock mass and the length of gob-floor or mining-floor until the maximum broken floor location are expressed by theoretical formulas on integrity theory. Taking a mining face in Chinese Anhui Province as the object, the relationship between broken floor rock mass and mining underground pressure is studied by numerical simulation, the theoretical analysis, and the DC exploration. The peak and scope of broken floor rock mass will enlarge until reaching limit value with the increasingly advanced distance. The mining gob stress contour is saddle-shaped, and its growing speed is becoming slower, so the 180 m coal mining face has reached the sufficient mining stage. Wave velocity of broken floor rock mass from 0 m to 16 m is greatly decreased by the mining disturbance, and it is basically conformed to theoretical formula and practical situation. The results can be relatively better used in the pressure mining of the Ordovician limestone, because it can provide some safe guarantee for mining deep coal seam.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Baojie Fu ◽  
Hualei Zhang ◽  
Min Tu ◽  
Xiangyang Zhang

The stability of panel floor, which is above confined water, is the key to determine the water inrush from the panel floor. Based on the characteristics of “lower three zones” of the panel floor, the mechanics analysis model of a floor water-resisting rock beam is established. Then, by the principle of virtual work and energy functional variational conditions, the trends of deflection and internal stress are researched in the effective water-resisting rock beam under the combined action of mining stress and water pressure. And how to determine its stability is acquired. According to the geological and mining conditions of A3 coal seam in Panxie mining area of Huainan Mining Group, three factors influencing on the stability of the floor rock beam are analyzed, such as elastic modulus, coefficient of viscosity, and water pressure. It is shown that the elastic modulus plays the most important role on the deformation of the rock beam. So, for improving the mechanical properties of the rock beam, the reinforcing floor technique has been proposed. On the one hand, it is contributed to improve the ability for resisting floor deformation. On the other hand, it can increase the coefficient of rock viscosity in water damage zones and reduce the speeds of loading and deformation in the whole rock beam. Hydrophobic decompression can effectively reduce the stress on the boundary of the rock beam, and the stability is enhanced. The research results have a guiding significance for determining whether there are water inrush risks in the panel above the confined aquifer.


Sign in / Sign up

Export Citation Format

Share Document