scholarly journals Optimization Design and Internal Flow Field Study of Open-Design Vortex Pump

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiongfa Gao ◽  
Weidong Shi ◽  
Ruijie Zhao ◽  
Ting Zhao ◽  
Hongfei Wang

To determine the influences of the main structural parameters on open-design vortex pump performance, optimize the vortex pump performance, and reduce the running vibration and improve stability, orthogonal testing method was introduced in this paper. The selected main factors included impeller outer diameter (D2), impeller outlet width (b2), outlet setting angle of impeller (β2), and inlet setting angle of impeller (β1), and the nine types of impellers were coded according to orthogonal table. After obtaining the preliminarily optimum value range for each factor through range analysis, comprehensive analysis was employed based on the orthogonal test to investigate the main factors and identify the primary and secondary influencing factors affecting the performance of the vortex pump. An optimization scheme was obtained for further design. The results show that the numerical calculation results of the optimization scheme pump are in good agreement with the test results, and it shows the feasibility of the numerical calculation method. The testing results showed that efficiency and head of the optimal model were 4.2% and 9 m higher than those of the prototype model, respectively. Improved efficiency and head met the design requirements. The orthogonal testing method proved the feasibility of performance optimization of the vortex pump. The backflow occurs at the pump entrance and rotates in the same direction with impeller. It moves along the pipe wall from the lateral cavity to the inlet and encourters with the approaching flow.

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1601
Author(s):  
Xiongfa Gao ◽  
Ting Zhao ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
Ya Shi ◽  
...  

The blade wrap angle of impeller is an important structural parameter in the hydraulic design of open-design vortex pump. In this paper, taking a vortex pump with a cylindrical blade structure as the research object, two kinds of different blade wrap angle of vortex pump impellers are designed. The experiment and numerical simulation research is carried out, and the results of external characteristics and internal flow field are obtained under different flow rate. The results show that when ensuring that other main structural parameters remain unchanged, the efficiency and head of open-design vortex pump increase with the blade wrap angle decreases. In the case of blade wrap angle increasing, the length of rotating reflux back from lateral cavity to inlet is longer. For the same type of vortex pump, the length of rotating reflux to inlet decreases with the increase of flow rate. At the inlet area of impeller front face, there is an area where liquid flows back to the lateral cavity. The volute section shows that after passing through the impeller and lateral cavity, the liquid is discharged to the pump outlet with strong spiral strength. It is found that the blade wrap angle decreases and the shaft power increases, while the pump efficiency increases. The impeller blade wrap angle of vortex pump can be considered to select a smaller value.


1986 ◽  
Vol 52 (473) ◽  
pp. 393-400 ◽  
Author(s):  
Koji KIKUYAMA ◽  
Mitsukiyo MURAKAMI ◽  
Kiyoshi MINEMURA ◽  
EIJI ASAKURA ◽  
Toru IKEGAMI

2006 ◽  
Vol 128 (6) ◽  
pp. 1281-1288 ◽  
Author(s):  
Jacob C. Allen ◽  
Phillip M. Ligrani

This paper describes the optimization of rotary shaft pump performance, which is accomplished by comparing the performance of four different centrifugal rotary pump configurations: hooked blades pump, backward-curved blades ID=12.7mm pump, contoured base pump, and backward-curved blades ID=19.1mm pump. Each of these devices utilizes a unique and simple impeller design where the blades are directly integrated into a shaft with an outer diameter of 25.4mm. Presented for each pump are performance data including volumetric flow rate, pump head, and hydraulic efficiency. When pumping water, the most optimal arrangement with the hooked impeller blades produces a maximum flow rate of 3.22L∕min and a pump head as high as 0.97m.


2021 ◽  
pp. 073490412110503
Author(s):  
Kevin M Brent ◽  
James S T’ien

In using thin fire blankets to protect structures in wildfires, heat rejections by radiation (reflection and emission) are essential for good performance. By varying the radiative properties of the front and back surfaces of the blankets, this article offers an optimization study of several scenarios of incident heat flux including pure convection, pure radiation, and combinations of the two. Two types of blanket heat-blocking efficiencies are studied in the optimization scheme. An overall efficiency is defined as the amount of incident heat blocked to the total amount of incident heat in specified wildfire scenarios. An instantaneous heat-blocking efficiency is defined as the instantaneous heat flux blocked to the instantaneous incident total heat flux which provides good understanding of the physics of heat-blocking mechanisms of fire blanket under quasi-steady conditions. In addition to maximizing these heat-blocking efficiencies, there are other optimization objectives, including the minimization of the blanket backside temperature. A genetic algorithm is used for the multi-objective optimization schemes. For the transient heat incidence, the optimization for the entire time sequence is performed with the possibility of a change of blanket radiative properties during the fire sequence, accounting for changes to the fire-facing surface caused by the incident heat.


Sign in / Sign up

Export Citation Format

Share Document