vortex pump
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 24)

H-INDEX

7
(FIVE YEARS 1)

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 353
Author(s):  
Hui Quan ◽  
Yanan Li ◽  
Lei Kang ◽  
Xinyang Yu ◽  
Kai Song ◽  
...  

Vortex pumps have good non-clogging performance owing to their impellers being retracted into retraction cavities, but they are much less efficient than ordinary centrifugal pumps. In this paper, numerical simulations were performed on a model of the 150WX200-20 vortex pump for four different blade types, and the influence of blade structure on pump performance was determined. The simulations revealed the existence of axial vortices in the flow passage between the blades in the impeller region. The geometric characteristics of these axial vortices were more regular in two-phase solid-liquid flow than single-phase liquid flow. The presence of the solid phase reduced the vortex strength compared with the single-phase flow and suppressed the increase in size of the secondary circulation vortex. It was found, however, that the blade shape had a greater influence on the circulating flow than the presence of the solid phase. The flow state of the medium flowing out of the impeller domain had a direct effect on the circulating flow with this effect being related to the law governing the flow of the medium in the flow channel between the blades. It was found that the performance of a front-bent blade was the best and that of a curved blade the worst. This influence of blade type on the internal flow structure was used to further explain the relationship between the internal flow structure and the external characteristics of the vortex pump, the understanding of which is crucial for blade selection and hydraulic optimization.


Author(s):  
Wen-Guang LI

Abstract A vortex pump with a specific speed of 76 was studied in its turbine mode by using Fluent 6.3 based on the steady, three-dimensional, incompressible, Reynolds time-averaged Navier-Stokes equations, standard k-? turbulence model and non-equilibrium wall function in multiple reference system. The performance and flow structure of six liquids with different densities and viscosities were characterized, and the hydraulic, volumetric, and mechanical losses were discomposed. The correction factors of flow rate, head, shaft-power, efficiency, and disc friction power in turbine mode were correlated with impeller Reynolds number at three operational points. The conversion factors of flow rate, head, efficiency from the pump mode to the turbine mode were expressed with Reynolds number and compared with the counterparts of centrifugal pumps in the literature. It was indicated that the vortex pump can produce power as a turbine but becomes inefficient with increasing viscosity or decreasing impeller Reynolds number, especially as the number is smaller than 104 due to increased hydraulic, volumetric, and mechanical power losses. A vortex structure with radial, axial, and meridian vortices occurs in the impeller at different flow rates and viscosities. The incidence at blade leading edge and deviation angle at blade trailing edge depend largely on flow rate and viscosity. The impeller should be modified to improve its hydraulic performance under highly viscous fluid flow conditions. The entropy generation rate method cannot demonstrate the change in hydraulic loss with viscosity when the Reynolds number is below 104.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hui Quan ◽  
Yongkang Wu ◽  
Ying Guo ◽  
Kai Song ◽  
Yanan Li

We design optimization on the overall blade structure of a vortex pump conducted by using the orthogonal test method to clarify the matching relationship of impeller and casing structures and then improve the hydraulic performance of the vortex pump. Based on two different impeller structures of forward-deflecting (denoted as R1 − F2) and backward-deflecting (denoted as F1 − R2), key parameters describing the impeller structure are calculated through optimization for the objective function of hydraulic efficiency by means of orthogonal tests and computational fluid dynamic simulations. Optimization computations show that the forward-deflecting blade impeller is superior to the backward-deflecting one. Model test of the optimized vortex pump is carried out calculating the error from the comparison of pump efficiencies calculated by model test and numerical simulation is calculated to be less than 6%. The experimental verification shows that the flow simulation has some errors. The weight of structure parameters such as the blade installation angle (α), the blade deflecting angle (β), the position of blade deflecting point (L), the radius (r) of smoothing arc at the deflecting point, the wedge type (W) of blade, to the lift head, the flow rate, and the efficiency of the pump is investigated, through multiparameter optimizations. Visualization observation of flows in the model pump consisted of a back-placed impeller and a front vaneless chamber is further performed. The characteristic of vortex formation predicted by flow simulation agrees with the result of visualization observation. The above results demonstrate that the optimum impeller type of vortex pump is forward-deflecting blade impeller. The optimum combination of the key structure parameters is that the deflection angle of the blade inlet (α) equals 30°, the position of blade deflecting point lM = 2/3 L, the chamfering radius (r) at the deflecting point r = 3 mm, and the best wedge type is axial deflecting blade.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiongfa Gao ◽  
Weidong Shi ◽  
Ruijie Zhao ◽  
Ting Zhao ◽  
Hongfei Wang

To determine the influences of the main structural parameters on open-design vortex pump performance, optimize the vortex pump performance, and reduce the running vibration and improve stability, orthogonal testing method was introduced in this paper. The selected main factors included impeller outer diameter (D2), impeller outlet width (b2), outlet setting angle of impeller (β2), and inlet setting angle of impeller (β1), and the nine types of impellers were coded according to orthogonal table. After obtaining the preliminarily optimum value range for each factor through range analysis, comprehensive analysis was employed based on the orthogonal test to investigate the main factors and identify the primary and secondary influencing factors affecting the performance of the vortex pump. An optimization scheme was obtained for further design. The results show that the numerical calculation results of the optimization scheme pump are in good agreement with the test results, and it shows the feasibility of the numerical calculation method. The testing results showed that efficiency and head of the optimal model were 4.2% and 9 m higher than those of the prototype model, respectively. Improved efficiency and head met the design requirements. The orthogonal testing method proved the feasibility of performance optimization of the vortex pump. The backflow occurs at the pump entrance and rotates in the same direction with impeller. It moves along the pipe wall from the lateral cavity to the inlet and encourters with the approaching flow.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1601
Author(s):  
Xiongfa Gao ◽  
Ting Zhao ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
Ya Shi ◽  
...  

The blade wrap angle of impeller is an important structural parameter in the hydraulic design of open-design vortex pump. In this paper, taking a vortex pump with a cylindrical blade structure as the research object, two kinds of different blade wrap angle of vortex pump impellers are designed. The experiment and numerical simulation research is carried out, and the results of external characteristics and internal flow field are obtained under different flow rate. The results show that when ensuring that other main structural parameters remain unchanged, the efficiency and head of open-design vortex pump increase with the blade wrap angle decreases. In the case of blade wrap angle increasing, the length of rotating reflux back from lateral cavity to inlet is longer. For the same type of vortex pump, the length of rotating reflux to inlet decreases with the increase of flow rate. At the inlet area of impeller front face, there is an area where liquid flows back to the lateral cavity. The volute section shows that after passing through the impeller and lateral cavity, the liquid is discharged to the pump outlet with strong spiral strength. It is found that the blade wrap angle decreases and the shaft power increases, while the pump efficiency increases. The impeller blade wrap angle of vortex pump can be considered to select a smaller value.


Sign in / Sign up

Export Citation Format

Share Document