scholarly journals Efficient Topology for DC-DC Boost Converter Based on Charge Pump Capacitor for Renewable Energy System

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Zeeshan Malik ◽  
Vineet Tirth ◽  
Amjad Ali ◽  
Ajmal Farooq ◽  
Ali Algahtani ◽  
...  

In an attempt to meet the global demand, renewable energy systems (RES) have gained an interest in it due to the availability of the resources, especially solar photovoltaic system that has been an importance since many years because of per watt cost reduction, improvement in efficiency, and abundant availability. Photovoltaic system in remote and rural areas is very useful where a grid supply is unavailable. In this scenario, power electronic converters are an integral part of the renewable energy systems particularly for electronic devices which are operated from renewable energy sources and energy storage system (fuel cell and batteries). In this article, a new topology of charge pump capacitor (CPC) which is based on high voltage gain technique DC-DC boost converter (DCBC) with dynamic modeling is proposed. To testify the efficacy of the introduced topology, a prototype has been developed in a laboratory, where input was given 10VDC and 80VDC output voltage achieved at the load side. Furthermore, the experimental result shows that the voltage stress of MOSFET switches is very less in comparison with the conventional boost converter with the same parameters as the proposed converter.

2020 ◽  
Author(s):  
Till Kolster ◽  
Rainer Krebs ◽  
Stefan Niessen ◽  
Mathias Duckheim

<div>Corrective transmission system operation can help integrate more renewable energy sources and save redispatch costs by providing a higher utilization of the power grid.</div><div>However, reliable and fast provision of flexibility are key to achieve corrective operation. <br></div><div>This work develops a new method to determine if flexibility from distribution grids is available on transmission corridors when needed. An analysis of the German energy system in the year 2030 is performed to estimate the potential of different flexibility options and shows the potential flexibility distribution systems can contribute to a corrective transmission system operation.<br> </div>


2021 ◽  
pp. 1-32
Author(s):  
Ruda Lee ◽  
Hyomun Lee ◽  
Dongsu Kim ◽  
Jongho Yoon

Abstract Battery systems are critical factors in the effective use of renewable energy systems because the self-production of electricity by renewables for self-consumption has become profitable for building applications. This study investigates the appropriate capacity of the Battery Energy Storage System (BESS) installed in all-electric zero energy power houses (AEZEPHs). The AEZEPH used for this study is a highly energy-efficient house. Its criteria indicate that all the electrical energy within the home is covered based on the generated electricity from on-site renewable energy systems, including that the annual net site energy use is almost equal to zero. The experiment for measured data of electricity consumed and generated in the buildings is conducted for a year (i.e., Jan. through Dec. 2014). Based on the measured data, patterns of the electricity consumed by the AEZEPH and generated by an on-site renewable energy system (i.e., photovoltaic (PV) system), and BESS's appropriate capacity is then analyzed and evaluated using the EES analysis tool, named Poly-sun. This study indicates that self-consumption can be increased up to 66% when the ESS system is installed and used during operating hours of the PV system. The amount of received electricity during the week tends to be reduced by about two times.


2014 ◽  
Vol 22 (2) ◽  
pp. 34-43 ◽  
Author(s):  
Justyna Chodkowska-Miszczuk

Abstract Small-scale renewable energy systems in the context of the development of distributed generation, are discussed for the case of Poland. A distributed energy system is efficient, reliable and environmentally friendly, and is one of the most recent trends in the development of the energy sector in Poland. One of the important dimensions of this process is the creation of micro- and small-power producers based on renewable, locally-available energy sources. It is clear that the development of small-scale renewable energy producers takes place in two ways. One of these is through small hydropower plants, which are the aftermath of hydropower development in areas traditionally associated with water use for energy purposes (northern and western Poland). The second is through other renewable energy sources, mainly biogas and solar energy and located primarily in southern Poland, in highly urbanized areas (e.g. Śląskie Voivodship). In conclusion, the development of small-scale renewable energy systems in Poland is regarded as a good option with respect to sustainable development.


Author(s):  
Mazharul Islam ◽  
M. Ruhul Amin ◽  
A. K. M. Sadrul Islam

People in the developing countries who lack basic services and economic opportunities are primarily concerned with improving their living conditions. At present, unemployment problem in the rural areas of the developing countries are diversifying the moral values and social responsibilities of unemployed youth. To solve the problem, rural development centres (involving vocational training, IT services and other productive activities) can contribute significantly for the upliftment of these rural youths and can transform them into grass-root entrepreneurs. One critical factor hindering the establishment of such rural development centers is access to affordable and reliable energy services. Under this backdrop, environmentally benign renewable energy systems can contribute significantly in providing much needed energy in the unserved or underserved rural development centers in the developing countries to achieve both local and global environmental benefits. The paper demonstrates that energy deficient, economically backward communities in the off-grid areas of the developing countries, can be given an array of opportunities for income generation and social progress through rural development centers with the aid of renewable energy sources (such as wind, solar photovoltaics, solar thermal, biomass and micro-hydro), thereby improving their standard of living. Poverty alleviation in rural areas can be accomplished and the critical role of access to adequate level of energy services, Information Technology (IT) and modern communication facilities in it demonstrated. Furthermore, the production, implementation, operation and maintenance of renewable energy applications being labor-intensive, will also result in job growth in the village context, preventing migration of labor force, especially of young men, from rural areas to overcrowded industrial areas. An appropriately designed renewable energy systems can also have a significant role in reducing the impact of climate change through non production of green house gases.


2020 ◽  
Author(s):  
Till Kolster ◽  
Rainer Krebs ◽  
Stefan Niessen ◽  
Mathias Duckheim

<div>Corrective transmission system operation can help integrate more renewable energy sources and save redispatch costs by providing a higher utilization of the power grid.</div><div>However, reliable and fast provision of flexibility are key to achieve corrective operation. <br></div><div>This work develops a new method to determine if flexibility from distribution grids is available on transmission corridors when needed. An analysis of the German energy system in the year 2030 is performed to estimate the potential of different flexibility options and shows the potential flexibility distribution systems can contribute to a corrective transmission system operation.<br> </div>


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Thirunavukkarasu ◽  
Yashwant Sawle

Electrification in rural areas is relatively costly compared to urban areas. Therefore, the aim of this research is to identify the best combination of hybrid renewable energy systems (HRESs) to satisfy the load demand in a sustainable and cost-efficient way. The techno-economic study of stand-alone hybrid photovoltaic–wind turbine–diesel–battery-converter energy systems based on the hybrid optimization model for electric renewable (HOMER) simulation has been analyzed for various locations in the Tamil Nadu state, India. Various combinations of the systems have been compared and analyzed based on the performance of their technical parameters, costs, the electrical power production of each source, and unmet load. The findings indicated that the off-grid solar–wind–diesel–battery configuration is the most economical for all the sites among other system configurations. Comparing with conventional diesel generators among all the locations, a combination of solar/wind/diesel/battery is the economically best design for Thoothukudi, with the least and most reliable solution in terms of net present cost and cost of energy. Also, the impact of intermittent variables becomes significant, so sensitivity analysis for the various parameters has been carried out. The study finds that the least cost of electricity and the net present cost of electricity for Thoothukudi are achieved at 0.266 $/kWh and 138,197 $, respectively. This is economical compared to a stand-alone diesel system where the obtained COE is $1.88 and the NPC is $977523. In the stand-alone diesel operating mode, 41854 kg of CO2 is produced, which is higher than CO2 emissions associated with any other renewable energy systems. According to the results, the Kanyakumari location outperforms in terms of producing environmental pollutants with emission of 1,020 kg/y CO2 at their best. Moreover, the results of the proposed study imply that the proposed renewable energy system in remote sites could be a more economical measure.


2020 ◽  
Vol 16 (2) ◽  
pp. 126-130
Author(s):  
Mahdi Mozaffarilegha ◽  
Sanaz Rashidifard ◽  
Mohammad Mozaffarilegha

The growth in energy consumption and the lack of access to the electricity network in remote areas, rising fossil fuel prices, the importance of using renewable energy in these areas is increasing. The integration of these resources to provide local loads has introduced a concept called microgrid. Optimal utilization of renewable energy systems is one of their most important issues. Due to the high price of equipment such as wind turbine, solar panels and batteries, capacity sizing of the equipment is vital. In this paper, presents an algorithm based on techno-economic for assessment optimum design of a renewable energy system including photovoltaic system, batteries and wind turbine is presented.


Author(s):  
Amir Ahadi ◽  
Shrutidhara Sarma ◽  
Jae Sang Moon ◽  
Jang Ho Lee

In recent years, integration of electric vehicles (EVs) has increased dramatically due to their lower carbon emissions and reduced fossil fuel dependency. However, charging EVs could have significant impacts on the electrical grid. One promising method for mitigating these impacts is the use of renewable energy systems. Renewable energy systems can also be useful for charging EVs where there is no local grid. This paper proposes a new strategy for designing a renewable energy charging station consisting of wind turbines, a photovoltaic system, and an energy storage system to avoid the use of diesel generators in remote communities. The objective function is considered to be the minimization of the total net present cost, including energy production, components setup, and financial viability. The proposed approach, using stochastic modeling, can also guarantee profitable operation of EVs and reasonable effects on renewable energy sizing, narrowing the gap between real-life daily operation patterns and the design stage. The proposed strategy should enhance the efficiency of conventional EV charging stations. The key point of this study is the efficient use of excess electricity. The infrastructure of the charging station is optimized and modeled.


Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


Sign in / Sign up

Export Citation Format

Share Document