scholarly journals Antitumor Effect of Inula viscosa Extracts on DMBA-Induced Skin Carcinoma Are Mediated by Proteasome Inhibition

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ouadie Mohamed El Yaagoubi ◽  
Ayoub Lahmadi ◽  
Abdelhakim Bouyahya ◽  
Hassan Filali ◽  
Hamid Samaki ◽  
...  

The aim of this work is to evaluate the antitumor effect mediated by the proteasome inhibitors of Inula viscosa extracts on skin carcinogenesis. Female Swiss albino mice were divided into five groups depending on the combination of skin cancer-inducing 7,12-dimethylbenz(a)anthracene (DMBA) and extract of Inula viscosa treatments. Histology of the affected skin and measurement of proteasome activity were performed to demonstrate the effect of Inula viscosa on mice. The identification of the molecules responsible for this inhibitory activity was carried out through the docking studies. The results showed that Inula viscosa extracts inhibit the development of papilloma in mice. Therefore, the best chemopreventive action of Inula viscosa was observed on mice in which extract treatment was performed before and after the induction of skin carcinogenesis. It was revealed that the ingestion of extracts Inula viscosa delays the formation of skin papillomas in animals and simultaneously decreases the size and number of papillomas, which is also reflected on the skin histology of the mice treated. Structure–activity relationship information obtained from component of Inula viscosa particularly tomentosin, inuviscolide, and isocosticacid demonstrated that distinct bonding modes in β1, β2, and β5 subunits determine its selectivity and potent inhibition for β5 subunit.

2019 ◽  
Vol 20 (21) ◽  
pp. 5326 ◽  
Author(s):  
Guedes ◽  
Aniceto ◽  
Andrade ◽  
Salvador ◽  
Guedes

Drug discovery now faces a new challenge, where the availability of experimental data is no longer the limiting step, and instead, making sense of the data has gained a new level of importance, propelled by the extensive incorporation of cheminformatics and bioinformatics methodologies into the drug discovery and development pipeline. These enable, for example, the inference of structure-activity relationships that can be useful in the discovery of new drug candidates. One of the therapeutic applications that could benefit from this type of data mining is proteasome inhibition, given that multiple compounds have been designed and tested for the last 20 years, and this collection of data is yet to be subjected to such type of assessment. This study presents a retrospective overview of two decades of proteasome inhibitors development (680 compounds), in order to gather what could be learned from them and apply this knowledge to any future drug discovery on this subject. Our analysis focused on how different chemical descriptors coupled with statistical tools can be used to extract interesting patterns of activity. Multiple instances of the structure-activity relationship were observed in this dataset, either for isolated molecular descriptors (e.g., molecular refractivity and topological polar surface area) as well as scaffold similarity or chemical space overlap. Building a decision tree allowed the identification of two meaningful decision rules that describe the chemical parameters associated with high activity. Additionally, a characterization of the prevalence of key functional groups gives insight into global patterns followed in drug discovery projects, and highlights some systematically underexplored parts of the chemical space. The various chemical patterns identified provided useful insight that can be applied in future drug discovery projects, and give an overview of what has been done so far.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2020 ◽  
Vol 17 (7) ◽  
pp. 840-849
Author(s):  
Mahendra Gowdru Srinivas ◽  
Prabitha Prabhakaran ◽  
Subhankar Probhat Mandal ◽  
Yuvaraj Sivamani ◽  
Pranesh Guddur ◽  
...  

Background: Thiazolidinediones and its bioisostere, namely, rhodanines have become ubiquitous class of heterocyclic compounds in drug design and discovery. In the present study, as part of molecular design, a series of novel glitazones that are feasible to synthesize in our laboratory were subjected to docking studies against PPAR-γ receptor for their selection. Methods and Results: As part of the synthesis of selected twelve glitazones, the core moiety, pyridine incorporated rhodanine was synthesized via dithiocarbamate. Later, a series of glitazones were prepared via Knovenageal condensation. In silico docking studies were performed against PPARγ protein (2PRG). The titled compounds were investigated for their cytotoxic activity against 3T3-L1 cells to identify the cytotoxicity window of the glitazones. Further, within the cytotoxicity window, glitazones were screened for glucose uptake activity against L6 cells to assess their possible antidiabetic activity. Conclusion: Based on the glucose uptake results, structure activity relationships are drawn for the title compounds.


2020 ◽  
Vol 16 (2) ◽  
pp. 155-166
Author(s):  
Naveen Dhingra ◽  
Anand Kar ◽  
Rajesh Sharma

Background: Microtubules are dynamic filamentous cytoskeletal structures which play several key roles in cell proliferation and trafficking. They are supposed to contribute in the development of important therapeutic targeting tumor cells. Chalcones are important group of natural compounds abundantly found in fruits & vegetables that are known to possess anticancer activity. We have used QSAR and docking studies to understand the structural requirement of chalcones for understanding the mechanism of microtubule polymerization inhibition. Methods: Three dimensional (3D) QSAR (CoMFA and CoMSIA), pharmacophore mapping and molecular docking studies were performed for the generation of structure activity relationship of combretastatin-like chalcones through statistical models and contour maps. Results: Structure activity relationship revealed that substitution of electrostatic, steric and donor groups may enhance the biological activity of compounds as inhibitors of microtubule polymerization. From the docking study, it was clear that compounds bind at the active site of tubulin protein. Conclusion: The given strategies of modelling could be an encouraging way for designing more potent compounds as well as for the elucidation of protein-ligand interaction.


2018 ◽  
Vol 18 (4) ◽  
pp. 488-505 ◽  
Author(s):  
K. P. Rakesh ◽  
Shi-Meng Wang ◽  
Jing Leng ◽  
L. Ravindar ◽  
Abdullah M. Asiri ◽  
...  

Cancer is the second leading cause of death worldwide. There is always a huge demand for novel anticancer drugs and diverse new natural or synthetic compounds are developed continuously by scientists. Presently, a large number of drugs in clinical practice have showed pervasive side effect and multidrug resistance. Sulfonyl or sulfonamide hybrids became one of the most attractive subjects due to their broad spectrum of pharmacological activities. Sulfonyl hybrids were broadly explored for their anticancer activities and it was found that they possess minimum side effect along with multi-drug resistance activity. This review describes the most recent applications of sulfonyl hybrid analogues in anticancer drug discovery and further discusses the mechanistic insights, structure-activity relationships and molecular docking studies for the potent derivatives.


2020 ◽  
Vol 20 (14) ◽  
pp. 1714-1721
Author(s):  
Hatem A. Abuelizz ◽  
El Hassane Anouar ◽  
Mohamed Marzouk ◽  
Mizaton H. Hasan ◽  
Siti R. Saleh ◽  
...  

Background: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies. Objective: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines. Methods: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets. Results: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase. Conclusion: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document