scholarly journals Fractional-Order Hyperbolic Tangent Sliding Mode Control for Chaotic Oscillation in Power System

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Darui Zhu ◽  
Wenchao Zhang ◽  
Chongxin Liu ◽  
Jiandong Duan

Chaotic oscillation will occur in power system when there exist periodic load disturbances. In order to analyze the chaotic oscillation characteristics and suppression method, this paper establishes the simplified mathematical model of the interconnected two-machine power system and analyzes the nonlinear dynamic behaviors, such as phase diagram, dissipation, bifurcation map, power spectrum, and Lyapunov exponents. Based on fractional calculus and sliding mode control theory, the fractional-order hyperbolic tangent sliding mode control is proposed to realize the chaotic oscillation control of the power system. Numerical simulation results show that the proposed method can not only suppresses the chaotic oscillation but also reduce the convergence time and suppress the chattering phenomenon and has strong robustness.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1425-1434 ◽  
Author(s):  
Sunhua Huang ◽  
Jie Wang

In this study, a fractional-order sliding mode controller is effectively proposed to stabilize a nonlinear power system in a fixed time. State trajectories of a nonlinear power system show nonlinear behaviors on the angle and frequency of the generator, phase angle, and magnitude of the load voltage, which would seriously affect the safe and stable operation of the power grid. Therefore, fractional calculus is applied to design a fractional-order sliding mode controller which can effectively suppress the inherent chattering phenomenon in sliding mode control to make the nonlinear power system converge to the equilibrium point in a fixed time based on the fixed-time stability theory. Compared with the finite-time control method, the convergence time of the proposed fixed-time fractional-order sliding mode controller is not dependent on the initial conditions and can be exactly evaluated, thus overcoming the shortcomings of the finite-time control method. Finally, superior performances of the fractional-order sliding mode controller are effectively verified by comparing with the existing finite-time control methods and integral order sliding mode control through numerical simulations.


2016 ◽  
Vol 86 (1) ◽  
pp. 401-420 ◽  
Author(s):  
Junkang Ni ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoyu Hu ◽  
Tianshi Shen

Sign in / Sign up

Export Citation Format

Share Document