scholarly journals Promoting Nrf2/Sirt3-Dependent Mitophagy Suppresses Apoptosis in Nucleus Pulposus Cells and Protects against Intervertebral Disc Degeneration

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Sunli Hu ◽  
Chenxi Zhang ◽  
Tianchen Qian ◽  
Yue Bai ◽  
Liang Chen ◽  
...  

One of the causes of intervertebral disc degeneration (IVDD) is nucleus pulposus cell (NPC) death, possibly apoptosis. In this study, we explored the role of the Nrf2/Sirt3 pathway and tert-butylhydroquinone (t-BHQ) in IVDD and elucidated the potential working mechanism. Reactive oxygen species (ROS) assay kits and malondialdehyde (MDA) assay kits were used to assess oxidative stress. Western blot and TUNEL staining were used to examine apoptosis. After siRNA against Nrf2 or lentivirus against Sirt3 was transfected into NPCs, the mechanism of the effect of the Nrf2/Sirt3 pathway on NPCs was assessed. The interaction between t-BHQ and its potential interacting protein NRF2 was further investigated through protein docking analysis. ChIP examined the binding affinity between Nrf2 and Sirt3 promoter. In vivo experiments, X-ray, hematoxylin-eosin (HE) staining, Safranin O staining, and immunohistochemistry were used to evaluate IVDD grades. The results demonstrated that activation of the Nrf2/Sirt3 pathway inhibited tert-butyl hydroperoxide- (TBHP-) induced apoptosis and mitochondrial dysfunction in vitro. In addition to apoptosis, upregulation of the Nrf2/Sirt3 pathway induced by t-BHQ restored TBHP-induced autophagic flux disturbances. However, its protective effect was reversed by chloroquine and Si-ATG5. Furthermore, t-BHQ ameliorated IVDD development in a rat model. In conclusion, our findings indicate that the Nrf2/Sirt3 pathway and its agonist represent a potential candidate for treating IVDD.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shufen Liu ◽  
Yuhao Cheng ◽  
Yuqi Tan ◽  
Jingcheng Dong ◽  
Qin Bian

Objectives. Aberrant transforming growth factor β (TGFβ) activation is detrimental to both nucleus pulposus (NP) cells and cartilage endplates (CEPs), which can lead to intervertebral disc degeneration (IDD). Ligustrazine (LIG) reduces the expression of inflammatory factors and TGFβ1 in hypertrophic CEP to prevent IDD. In this study, we investigate the effects of LIG on NP cells and the TGFβ signaling. Design. LIG was injected to the lumbar spinal instability (LSI) mouse model. The effect of LIG was evaluated by intervertebral disc (IVD) score in the LSI mouse model. The expression of activated TGFβ was examined using immunostaining with pSmad2/3 antibody. The upright posture (UP) rat model was also treated and evaluated in the same manner to assess the effect of LIG. In ex vivo study, IVDs from four-week old mice were isolated and treated with 10−5, 10−6, and 10−7 M of LIG. We used western blot to detect activated TGFβ expression. TGFβ-treated human nucleus pulposus cells (HNPCs) were cotreated with optimized dose of LIG in vitro. Immunofluorescence staining was performed to determine pSmad2/3, connective tissue growth factor (CCN2), and aggrecan (ACAN) expression levels. Results. IVD score and the percentage of pSmad2/3+ NP cells were low in LIG-treated LSI mice in comparison with LSI mice, but close to the levels in the Sham group. Similarly, LIG reduced the overexpression of TGFβ1 in NP cells. The inhibitory effect of LIG was dose dependent. A dose of 10−5 M LIG not only strongly attenuated Smad2/3 phosphorylation in TGFβ-treated IVD ex vivo but also suppressed pSmad2/3, CCN2, and ACAN expression in TGFβ-treated NP cells in vitro. Conclusions. LIG prevents IDD via suppression of TGFβ overactivation in NP cells.


Author(s):  
Chenglong Xie ◽  
Yifeng Shi ◽  
Zuoxi Chen ◽  
Xin Zhou ◽  
Peng Luo ◽  
...  

Oxidative stress–induced apoptosis and senescence of nucleus pulposus (NP) cells play a crucial role in the progression of intervertebral disc degeneration (IVDD). Accumulation of studies has shown that activated autophagy and enhanced autophagic flux can alleviate IVDD. In this study, we explored the effects of apigenin on IVDD in vitro and in vivo. Apigenin was found to inhibit tert-butyl hydroperoxide (TBHP)–induced apoptosis, senescence, and ECM degradation in NP cells. In addition, apigenin treatment can restore the autophagic flux blockage caused by TBHP. Mechanistically, we found that TBHP may induce autophagosome and lysosome fusion interruption and lysosomal dysfunction, while apigenin alleviates these phenomena by promoting the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, apigenin also exerts a protective effect against the progression of IVDD in the puncture-induced rat model. Taken together, these findings indicate that apigenin protects NP cells against TBHP-induced apoptosis, senescence, and ECM degradation via restoration of autophagic flux in vitro, and it also ameliorates IVDD progression in rats in vivo, demonstrating its potential for serving as an effective therapeutic agent for IVDD.


2018 ◽  
Vol 46 (07) ◽  
pp. 1561-1580 ◽  
Author(s):  
Zengjie Zhang ◽  
Chenggui Wang ◽  
Jialiang Lin ◽  
Haiming Jin ◽  
Ke Wang ◽  
...  

Intervertebral disc degeneration (IDD) is a major cause of lower back pain, but few efficacious medicines have been developed for IDD. Increased nucleus pulposus cells apoptosis is a dominant pathogenesis of IDD and is considered a therapeutic target. Previously, our group proved that autophagy may protect nucleus pulposus cells against apoptosis. As one of the major bioflavonoids of citrus, naringin activates autophagy. Therefore, we hypothesize that naringin may have therapeutic potential for IDD by activating autophagy in nucleus pulposus cells. In this study, we evaluated the effects of naringin on TBHP-induced oxidative stress in nucleus pulposus cells in vitro as well as in puncture-induced rat IDD model in vivo. Our results showed that naringin could reduce the incidence of oxidative stress-induced apoptosis in nucleus pulposus cells and promoted the expression of autophagy markers LC3-II/I and beclin-1. Meanwhile, inhibition of autophagy by 3-MA may partially reverse the anti-apoptotic effect of naringin, indicating that autophagy was involved in the protective effect of naringin in nucleus pulposus cells. Further study showed that autophagy regulation of naringin may be related to AMPK signaling. Also, we found that naringin treatment can regulate the expression of collagen II, aggrecan and Mmp13 to sustain the extracellular matrix. Furthermore, our in vivo study showed that naringin can ameliorate IDD in puncture-induced rat model. In conclusion, our study suggests that naringin can protect nucleus pulposus cells against apoptosis and ameliorate IDD in vivo, the mechanism may relate to its autophagy regulation.


Sign in / Sign up

Export Citation Format

Share Document