scholarly journals Mechanism and Control of Roadway Floor Rock Burst Induced by High Horizontal Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dongming Guo ◽  
Xinchao Kang ◽  
Zhiying Lu ◽  
Qiyu Chen

According to the characteristics of rock burst of high horizontal stress roadway floor, the rock burst mechanism of roadway floor was studied with the background of south track roadway Xing’an mine. Based on the deflection theory and energy principle of the slab, the mechanical model of the floor of the roadway under high horizontal stress was established, the stress and energy criteria of rock burst occurred in the floor of the roadway were deduced, the prevention and control measures of the floor pressure relief with large diameter borehole and concrete-filled steel tube pile support were put forward, and the key parameters were determined. By establishing a numerical model, the evolution law of plastic zone, horizontal stress, and elastic strain energy density of roadway floor with or without support is contrastively analyzed. The results show that the effective means to prevent and control the floor rock burst is to cut off the stress transfer path by weakening the hard floor to reduce floor energy accumulation so as to reduce the floor rock burst risk. Based on the above research, field tests were carried out, and the microseismic monitoring results showed that the floor pressure relief of large diameter boreholes and concrete-filled steel tube pile support effectively relieved the floor rock burst and guaranteed the safety and efficiency of roadway excavation. This technology can provide a reference for the prevention and control of floor rock burst of similar roadways.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shuai Di

Deep rock burst accidents occur frequently and become increasingly serious. Further improving the effectiveness and accuracy of the prevention and control of rock burst, ensuring the safe and efficient production of mines, clarifying the basic causes of disasters, and refining the type of deep rock burst are the most important key links. Aiming at the problems such as unclear incentives and types and the lack of effective and targeted prevention measures of deep rock burst, taking Xin’an Mine as the research background, based on the energy theory, the coal and rock mass multisource energy unified equation was established to analyze coal and rock mass instability mechanism. According to the different degrees of participation of various factors, the types of deep rock burst are determined as three categories and four types, and the corresponding judgment criteria are proposed. The precise prevention and control system for the source of rock burst with Xin’an characteristics is proposed, successfully applied to the 8101 working face, which not only guarantees the safe production of the working face, but also achieves good economic benefits. The research results lay the foundation for improving the accuracy and precision of the prevention and control of deep rock burst and provide theoretical guidance for the safe and efficient mining of the mine.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tianwei Lan ◽  
Chaojun Fan ◽  
Jun Han ◽  
Hongwei Zhang ◽  
Jiawei Sun

Rock burst induced by mining is one of the most serious dynamic disasters in the process of coal mining. The mechanism of a rock burst is similar to that of a natural earthquake. It is difficult to accurately predict the “time, space, and strength” of rock burst, but the possibility of rock burst can be predicted based on the results of microseismic monitoring. In this paper, the rock burst system under the tectonic stress field is established based on the practice of coal mining and the result of mine ground crustal stress measurement. According to the magnitude of microseismic monitoring, the amount of the energy and spatial position of the rock burst are determined. Based on the theory of explosion mechanics, aiming at the prevention and control of rock burst in the coal mine, the technique of liquid CO2 fracturing blasting is put forward. By the experiment of blasting mechanics, the blasting parameters are determined, and the controlling mechanism of rock burst of liquid CO2 fracturing blasting is revealed. The application of liquid CO2 fissure blasting technology in the prevention and control of rock burst in Jixian Coal Mine shows that CO2 fracturing blasting reduces the stress concentration of the rock burst system and transfers energy to the deeper part, and there is no open fire in the blasting. It is a new, safe, and efficient method to prevent and control rock burst, which can be applied widely.


2013 ◽  
Vol 353-356 ◽  
pp. 303-306
Author(s):  
Zhi Chao Tian ◽  
Long Hao Dong ◽  
Min Ma ◽  
Ye Jiao Liu

According to the actual monitoring data of mining environment and rock burst happening on the 3511 fully-mechanized workface in Anyuan coal mine, the research of the rock burst on the workface and its surrounding rock of gob-side entry is done and the reasonable supporting scheme is determined. The research results are of great guiding importance to the coal mining that has similar condition, provide scientific basis for the control technology of rock burst on the workface and its gob-side entry as well as the reasonable identification of support parameters on the gob-side tunnel, and supply technology protection in order to accelerate the advancing speed of workface. Finally it can produce larger economic benefit.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Fangfang Zhang

Current energy to “release” after accumulating + first for the mechanism of rock bursts occurred in analysis of the strategy is accepted by many scholars, based on the existing means of prevention and control of percussive ground pressure, from the angle of the prevention and control of design of the mechanism of impact ground pressure energy regulation, namely, “weakened after the first release +” softened water injection measures and “lead after the first release +” drilling pressure relief measures, for the study of mining under the action of a strong shock tendentiousness rock energy regulatory mechanism; based on rock mechanics experiment, the analysis under different modification measures should be variant energy storage mechanisms of induced damage evolution of rock energy. The mechanism of energy evolution in the modification of strong bursting liability roof rock is revealed. The results show that different modification regulation measures can effectively change the physical and mechanical parameters of target rock samples and realize “hard rock softening or soft rock hardening.” Samples under different modification measures are classified as initial consolidation stage, elastic stage, stage of plastic deformation, yield failure stage, and late stage, the energy evolution is roughly the same as the sample complete natural condition, but the yield failure stage and the destruction of late stage have an obvious difference, which provides favorable conditions for impact ground pressure to prevent. With the help of three characteristic energy indexes of total strain, elastic strain energy, and dissipative strain energy of rock samples, the evolution law of energy indexes under different modification control measures is analyzed. The index of elastic energy consumption ratio is introduced as a precursor feature of rock instability and failure, which indicates the rock impact tendency to a certain extent. The energy regulation mechanisms of “first release+then weakening” water injection softening measures and “first release+then guidance” drilling pressure relief measures are explained theoretically, respectively. However, we should focus on the defects of the corresponding control measures and finally try to make a reasonable combination of different modification measures. Finally, the gradient pressure relief scheme should be considered in order to avoid large stress drop caused by large-scale pressure relief in the region and aggravate the instability of rock mass. The instability of rock mass is further aggravated.


2011 ◽  
Vol 261-263 ◽  
pp. 1484-1488
Author(s):  
Guo Qing Chen ◽  
Guo Shao Su ◽  
Tian Bin Li

Rock burst hazard is the main problem of hard rock deep tunnel under high ground stress conditions. The prevention logic of prevention and control of rock burst is proposed by combining local energy release rate index based on the brittle Hoek-Brown model. Stress releasing holes are adopted to lead some energy to release actively and eliminate burst potential of rock burst. Supporting opportunity and parameters were studied by contrasting the magnitude of released energy in FLAC3D numerical software, and then the prevention logic of rock burst is presented. Stress releasing holes relieve stress concentration of the working face, transfer the stress to the deep and reduce the risk of rock burst near the working face. At last, the prevention and control of rock burst for sinping II Hydropower tunnel was analyzed, the results are in good agreement with the actual situations. The proposed method could benefit other deep tunnel projects which have brittle failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjing Liu ◽  
Deyu Qian ◽  
Xingguo Yang ◽  
Sujian Wang ◽  
Jinping Deng ◽  
...  

Rock burst is a typical dynamic disaster in deep underground coal mining. Based on the support problems of the deep roadways in fully mechanized caving face 401111 of Hujiahe Coal Mine suffering from rock burst in Shaanxi Province of China, the failure law and influencing factors of the surrounding rock of the roadway are analyzed. The results show that the deformation of surrounding rock in the roadway shows the characteristics of elastic, plastic transformation, rheology, and expansion. At the same time, it has the typical characteristics of deep roadway, such as the fast deformation speed, long duration, asymmetric deformation, and large loose broken area of surrounding rock. Based on the principle of “strengthening support in shallow zones” and “deep pressure relief in deep zones” in the surrounding rock, the control scheme of surrounding rock in the return roadway of fully mechanized caving working face 401111 is proposed by taking the large diameter pressure relief and deep hole blasting as the main means of pressure relief. The practice shows that the surrounding rock of the return roadway is relatively stable after the implementation of the new scheme, which shows that the design of the new support scheme is reasonable and reliable. It is of great significance for the stability control of surrounding rock of the mining roadway suffering from rock burst.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shan-chao Hu ◽  
Yun-liang Tan ◽  
Jian-guo Ning ◽  
Wei-Yao Guo ◽  
Xue-sheng Liu

Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zengde Yin ◽  
Jinxiao Liu ◽  
Wenbin Sun ◽  
Kebao Guo ◽  
Feng Zhang

Weak impact occurs during roadway excavation in some extremely thick coal seams in China. Although this hazard is not enough to destroy the roadway, it will cause fracturing and large deformation of the roadway surrounding rock, resulting in the fracturing of bolts and anchor cables and bringing great difficulties to roadway support. In the hope of solving this problem, firstly, the reason for impact occurrence in the roadway of the extremely thick coal seam is analyzed from the perspective of energy. Then, the surrounding rock fracture evolution in such a roadway is explored by means of numerical simulation, microseism, and borehole observation. Furthermore, the “pressure relief and yielding support” joint prevention and control technology is proposed and applied to Yili No. 1 Coal Mine. The field engineering application results show that the joint prevention and control technology can effectively reduce the impact energy and ensure the stability of the roadway surrounding rock in the extremely thick coal seam. The research findings can provide a theoretical foundation for the roadway support of the same type.


Sign in / Sign up

Export Citation Format

Share Document