scholarly journals Controlling Mechanism of Rock Burst by CO2 Fracturing Blasting Based on Rock Burst System

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tianwei Lan ◽  
Chaojun Fan ◽  
Jun Han ◽  
Hongwei Zhang ◽  
Jiawei Sun

Rock burst induced by mining is one of the most serious dynamic disasters in the process of coal mining. The mechanism of a rock burst is similar to that of a natural earthquake. It is difficult to accurately predict the “time, space, and strength” of rock burst, but the possibility of rock burst can be predicted based on the results of microseismic monitoring. In this paper, the rock burst system under the tectonic stress field is established based on the practice of coal mining and the result of mine ground crustal stress measurement. According to the magnitude of microseismic monitoring, the amount of the energy and spatial position of the rock burst are determined. Based on the theory of explosion mechanics, aiming at the prevention and control of rock burst in the coal mine, the technique of liquid CO2 fracturing blasting is put forward. By the experiment of blasting mechanics, the blasting parameters are determined, and the controlling mechanism of rock burst of liquid CO2 fracturing blasting is revealed. The application of liquid CO2 fissure blasting technology in the prevention and control of rock burst in Jixian Coal Mine shows that CO2 fracturing blasting reduces the stress concentration of the rock burst system and transfers energy to the deeper part, and there is no open fire in the blasting. It is a new, safe, and efficient method to prevent and control rock burst, which can be applied widely.

2013 ◽  
Vol 353-356 ◽  
pp. 303-306
Author(s):  
Zhi Chao Tian ◽  
Long Hao Dong ◽  
Min Ma ◽  
Ye Jiao Liu

According to the actual monitoring data of mining environment and rock burst happening on the 3511 fully-mechanized workface in Anyuan coal mine, the research of the rock burst on the workface and its surrounding rock of gob-side entry is done and the reasonable supporting scheme is determined. The research results are of great guiding importance to the coal mining that has similar condition, provide scientific basis for the control technology of rock burst on the workface and its gob-side entry as well as the reasonable identification of support parameters on the gob-side tunnel, and supply technology protection in order to accelerate the advancing speed of workface. Finally it can produce larger economic benefit.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huichao Yin ◽  
Bin Xu ◽  
Shangxian Yin ◽  
Wuzi Tian ◽  
Hui Yao ◽  
...  

Through field observation and theoretical study, we found that the Hanxing mining area has a typical ternary structure in coal mining under high water pressure of the aquifer. This ternary structure is the Ordovician limestone aquifer-aquiclude including thin limestones-coal seam. Although the aquiclude is considerably thick, there is still a great risk of water burst during mining under water pressure in the deep burial environment. Multidimensional characteristics of floor water inrush in deep mining are summarized in the paper, including water migration upwardly driven by the Ordovician confined water, the planar dispersion of the water inrush channel, the stepped increase of the water inrush intensity, the hysteretic effluent of the water inrush time and the exchange, and adsorption of the water quality. The water inrush mechanism is clarified that the permeability, dilatancy, fracturing, and ascending of the water from the Ordovician limestone aquifer form a planar and divergent flow through the transfer, storage, and transportation of thin limestone aquifers. The corresponding water inrush risk evaluation equation is also proposed. Based on the thickness of the aquiclude, the thickness of the failure zones, and the water inrush coefficient, the floor aquiclude is classified into five categories. While water inrush cannot be completely controlled by the traditional underground floor reinforcement with ultra-thick aquiclude or even zonal grouting, a comprehensive prevention and control concept of the four-dimensional floor water hazard in full time-space domain are proposed. A tridimensional prevention and control model of three-dimensional reticulated exploration, treatment, verification, and supplementation is presented. A full time domain technological quality control process of condition assessment, exploration, remediation, inspection, evaluation, monitoring, and reassurance is formed, and a water disaster prevention method with full time-space tridimensional network in deep coal mining is established. Case study in the Hanxing mining area demonstrates that the proposed methods are highly effective.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 562
Author(s):  
Marek Jendryś ◽  
Andrzej Hadam ◽  
Mateusz Ćwiękała

The following article analyzes the effectiveness of directional hydraulic fracturing (DHF) as a method of rock burst prevention, used in black coal mining with a longwall system. In order to define changes in seismic activity due to DHF at the “Rydułtowy” Black Coal Mine (Upper Silesia, Poland), observations were made regarding the seismic activity of the rock mass during coal mining with a longwall system using roof layers collapse. The seismic activity was recorded in the area of the longwall itself, where, on a part of the runway, the rock mass was expanded before the face of the wall by interrupting the continuity of the rock layers using DHF. The following article presents measurements in the form of the number and the shock energy in the area of the observed longwall, which took place before and after the use of DHF. The second part of the article unveils the results of numerical modeling using the discrete element method, allowing to track the formation of goafs for the variant that does not take DHF into consideration, as well as with modeled fractures tracing DHF carried out in accordance with the technology used at “Rydułtowy” coal mine.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shuai Di

Deep rock burst accidents occur frequently and become increasingly serious. Further improving the effectiveness and accuracy of the prevention and control of rock burst, ensuring the safe and efficient production of mines, clarifying the basic causes of disasters, and refining the type of deep rock burst are the most important key links. Aiming at the problems such as unclear incentives and types and the lack of effective and targeted prevention measures of deep rock burst, taking Xin’an Mine as the research background, based on the energy theory, the coal and rock mass multisource energy unified equation was established to analyze coal and rock mass instability mechanism. According to the different degrees of participation of various factors, the types of deep rock burst are determined as three categories and four types, and the corresponding judgment criteria are proposed. The precise prevention and control system for the source of rock burst with Xin’an characteristics is proposed, successfully applied to the 8101 working face, which not only guarantees the safe production of the working face, but also achieves good economic benefits. The research results lay the foundation for improving the accuracy and precision of the prevention and control of deep rock burst and provide theoretical guidance for the safe and efficient mining of the mine.


2013 ◽  
Vol 353-356 ◽  
pp. 398-402
Author(s):  
Xiao Yu Zhang ◽  
Feng Ming Liu ◽  
Gang Chen

The initial stress of rock is a basic parameter, which can be used for surrounding rock stability analysis, exploitation and support design. By utilizing stress relief method of hollow inclusion with its characters of high precision and obtaining three dimensional stress at one time, we have measured three dimensional stress magnitude and direction in north wing roadway (-850m) and 710 open-off cut (-1000m), respectively. The results show that the horizontal tectonic stress is obvious in this coal area.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dongming Guo ◽  
Xinchao Kang ◽  
Zhiying Lu ◽  
Qiyu Chen

According to the characteristics of rock burst of high horizontal stress roadway floor, the rock burst mechanism of roadway floor was studied with the background of south track roadway Xing’an mine. Based on the deflection theory and energy principle of the slab, the mechanical model of the floor of the roadway under high horizontal stress was established, the stress and energy criteria of rock burst occurred in the floor of the roadway were deduced, the prevention and control measures of the floor pressure relief with large diameter borehole and concrete-filled steel tube pile support were put forward, and the key parameters were determined. By establishing a numerical model, the evolution law of plastic zone, horizontal stress, and elastic strain energy density of roadway floor with or without support is contrastively analyzed. The results show that the effective means to prevent and control the floor rock burst is to cut off the stress transfer path by weakening the hard floor to reduce floor energy accumulation so as to reduce the floor rock burst risk. Based on the above research, field tests were carried out, and the microseismic monitoring results showed that the floor pressure relief of large diameter boreholes and concrete-filled steel tube pile support effectively relieved the floor rock burst and guaranteed the safety and efficiency of roadway excavation. This technology can provide a reference for the prevention and control of floor rock burst of similar roadways.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7287
Author(s):  
Xinxin Zhou ◽  
Zhenhua Ouyang ◽  
Ranran Zhou ◽  
Zhenxing Ji ◽  
Haiyang Yi ◽  
...  

In order to prevent the multi-dynamic disasters induced by rock burst and roof water inrush in strong rock burst coal seams under multi-aquifers, such as is the case with the 207 working face in the Tingnan coal mine considered in this study, the exhibited characteristics of two types of dynamic disasters, namely rock burst and water inrush, were analyzed. Based on the lithology and predicted caving height of the roof, the contradiction between rock burst and water inrush was analyzed. In light of these analyses, an integrated method, roof pre-splitting at a high position and shattering at a low position, was proposed. According to the results of numerical modelling, pre-crack blasting at higher rock layers enables a cantilever roof cave in time, thereby reducing the risk of rock burst, and pre-crack blasting at underlying rock layers helps increase the crushing degree of the rock, which is beneficial for decreasing the caving height of rock layers above goaf, thereby preventing the occurrence of water inrush. Finally, the proposed method was applied in an engineering case, and the effectiveness of this method for prevention and control of multi-dynamics disasters was evaluated by field observations of the caving height of rock layers and micro-seismic monitoring. As a result, the proposed method works well integrally to prevent and control rock burst and water inrush.


Sign in / Sign up

Export Citation Format

Share Document