scholarly journals A Double-Boost Converter Based on Coupled Inductance and Magnetic Integration

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hongzhu Li ◽  
Ling Zhu ◽  
Le Wang

High-voltage gain converter has a high-frequency use in some industrial fields, for instance, the fuel cell system, the photovoltaic system, electric vehicles, and the high-intensity discharge lamp. In order to solve the problem of the low-voltage gain of traditional boost converter, the double-boost converter with coupled inductance and doubled voltage is proposed, which connects the traditional boost converter in parallel. The voltage gain of the converter is further improved by introducing the voltage-doubled unit of the coupled inductance. Moreover, the clamp capacitor can absorb the leakage inductance in the circuit and reduce the voltage stress of the switch. In addition, two coupled inductors are magnetically collected; then, the loss of the core is analyzed under the same gain. The detailed analysis of the proposed converter and a comparison considering other topologies previously published in the literature are also presented in this article. In order to verify the proposed converter performance, a prototype has been built for a power of 200 W, input and output voltages of 12 and 84 V, respectively, and a switching frequency of 50 kHz. Experimental results validate the effectiveness of the theoretical analysis proving the satisfactory converter performance, whose peak efficiency is 95.5%.

Author(s):  
P.Rangeela and Dr.A.RubyMeena

The high step up dc-dc converter with a quadratic boost converter with voltage multiplier cell (VM) to achieve a high voltage gain in the continuous conduction mode (CCM). To increase higher voltage gain, lower voltage stress on diodes and capacitors and requiring smaller inductors with reduced number of components. Quadratic Boost DC-DC converters are mainly used in applications like HEVs and EVs vehicles. The purpose of boost converter is to charge a low-voltage (12 V) battery during boost mode and to assist the high-voltage 200V battery. In this implementation, closed-loop control in high voltage side is implemented using PI (proportional integral) controller.


Author(s):  
P.Rangeela and Dr.A.RubyMeena

The high step up dc-dc converter with a quadratic boost converter with voltage multiplier cell (VM) to achieve a high voltage gain in the continuous conduction mode (CCM). To increase higher voltage gain, lower voltage stress on diodes and capacitors and requiring smaller inductors with reduced number of components. Quadratic Boost DC-DC converters are mainly used in applications like HEVs and EVs vehicles. The purpose of boost converter is to charge a low-voltage (12 V) battery during boost mode and to assist the high-voltage 200V battery. In this implementation, closed-loop control in high voltage side is implemented using PI (proportional integral) controller


Author(s):  
Hussain Sayed ◽  
Oday A Ahmed ◽  
Dhari Y Mahmood ◽  
Kanaan A. Jalal ◽  
Waleed H. Habeeb

<span>A single-stage symmetrical high voltage gain half-bridge (HB) DC-AC converter is proposed in this paper. Using two Y-source impedance networks, the following key features are utilized from the proposed topology: single stage inverter with very high voltage gain compared to conventional HB inverter, symmetrical output voltage waveform, low voltage stress across the passive components because it is distributed across two impedance networks, and only two switching devices are needed for the converter. Furthermore, important merit of the proposed topology is that the current drawn by the Y-coupled inductors is symmetrical around the X-axis which helps to prevent the Y-network cores from reaching the saturation state. And the last compelling feature is a virtual neutral point for the load connection is inherited in the proposed double Y-source impedance networks converter with no need for DC-Link capacitors. For low voltage sources such as photovoltaic (PV) and fuel cell, the converter is designed to achieve continuous input current operation. The operation modes and principles of the inverter are analyzed and discussed deeply in this paper. A detailed mathematical equations system is derived and verified for the presented converter. Finally, PSpice simulation tools are used to simulate the converter and verify the derived mathematical formulas.</span>


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3032 ◽  
Author(s):  
Hongchen Liu ◽  
Xi Su ◽  
Junxiong Wang

In this paper, two types of high step-up coupled inductor inverters based on qSBIs (quasi- switched boost inverters) are proposed. By applying the coupled inductor to the qSBIs, the voltage gain of the proposed inverter is regulated by turn ratio and duty ratio. Thus, a high voltage gain can be achieved without the circuits operating at the extreme duty cycle by choosing a suitable turn ratio of the coupled inductor. In addition, the proposed circuits have the characteristics of continuous input current and low voltage stress across the passive components. A boost unit can be added to the proposed inverters for further improvement of the voltage gain. In this paper, the working principle, steady state analysis, and the comparisons of the proposed inverter with other impedance-source inverters are described. A 200 W prototype was created and the experimental results confirm the correctness of the analysis in this paper.


2021 ◽  
Author(s):  
HENRIQUE JAHNKE HOCH ◽  
TIAGO MIGUEL KLEIN FAISTEL ◽  
ADEMIR TOEBE ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

High step-up DC-DC converters are necessary in photovoltaic energy generation, due the low voltage of the panels source. This article propose the Doubler Output Coupled Inductor converter. This converter is based in boost converter and utilize switched capacitors and a coupled inductor to maximize the static voltage gain. The converter achieve a high voltage gain with low turns ratio in the coupled inductor and an acceptable duty cycle. Can highlight the converter utilize low number of components and have low voltage and current stresses in semiconductors. To validate and evaluate the operation of the converter a 200W prototype is simulated.


Author(s):  
K. Jyotheeswara Reddy ◽  
N. Sudhakar ◽  
S. Saravanan ◽  
B. Chitti Babu

AbstractHigh switching frequency and high voltage gain DC-DC boost converters are required for electric vehicles. In this paper, a new high step-up boost converter (HSBC) is designed for fuel cell electric vehicles (FCEV) applications. The designed converter provides the better high voltage gain compared to conventional boost converter and also reduces the input current ripples and voltage stress on power semiconductor switches. In addition to this, a neural network based maximum power point tracking (MPPT) controller is designed for the 1.26 kW proton exchange membrane fuel cell (PEMFC). Radial basis function network (RBFN) algorithm is used in the neural network controller to extract the maximum power from PEMFC at different temperature conditions. The performance analysis of the designed MPPT controller is analyzed and compared with a fuzzy logic controller (FLC) in MATLAB/Simulink environment.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1932
Author(s):  
Navid Salehi ◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.


2017 ◽  
Vol 64 (4) ◽  
pp. 2809-2819 ◽  
Author(s):  
Yong Cao ◽  
Vahid Samavatian ◽  
Kaveh Kaskani ◽  
Hamidreza Eshraghi

Sign in / Sign up

Export Citation Format

Share Document