scholarly journals Cost-Effective Optimization for Blockchain-Enabled NOMA-Based MEC Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianbo Du ◽  
Yan Sun ◽  
Aijing Sun ◽  
Guangyue Lu ◽  
Zhixian Chang ◽  
...  

Blockchain technology has been widely used in many fields. However, the proof of work (PoW) problem in the mining process of mobile devices requires a large amount of computing resources and energy consumption, which brings huge challenges to mobile devices. Mobile edge computing (MEC) can effectively solve the above problems, allowing mobile devices to offload tasks to edge servers to relieve the pressure of limited computing resources on mobile devices. Nonorthogonal multiple access (NOMA) is good at improving spectrum efficiency, so that the system can accommodate more users. In this paper, we propose a new NOMA-based MEC-enabled blockchain framework. Under the conditions of a given task execution deadline, the decision of offloading, local computing resource allocation, user clustering and admission control, and transmit power control is jointly optimized to minimize the total cost of the system. Since the problem is hard to solve, we decouple it into subproblems for low-complexity solutions. First, we propose two heuristic algorithms to obtain the binary offloading decision and user association, and then closed-form solutions of local resource allocation and transmit power control are obtained under the required delay constraints. Simulation results show that our proposed algorithms perform good in cost reduction compared with other baseline algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7837
Author(s):  
Kisong Lee

In this study, wireless-powered cognitive radio networks (WPCRNs) are considered, in which N sets of transmitters, receivers and energy-harvesting (EH) nodes in secondary networks share the same spectrum with primary users (PUs) and none of the EH nodes is allowed to decode information but can harvest energy from the signals. Given that the EH nodes are untrusted nodes from the point of view of information transfer, the eavesdropping of secret information can occur if they decide to eavesdrop on information instead of harvesting energy from the signals transmitted by secondary users (SUs). For secure communications in WPCRNs, we aim to find the optimal transmit powers of SUs that maximize the average secrecy rate of SUs while maintaining the interference to PUs below an allowable level, while guaranteeing the minimum EH requirement for each EH node. First, we derive an analytical expression for the transmit power via dual decomposition and propose a suboptimal transmit power control algorithm, which is implemented in an iterative manner with low complexity. The simulation results confirm that the proposed scheme outperforms the conventional distributed schemes by more than 10% in terms of the average secrecy rate and outage probability and can also considerably reduce the computation time compared with the optimal scheme.


Sign in / Sign up

Export Citation Format

Share Document