scholarly journals Influence of Upper Seam Extraction on Abutment Pressure Distribution during Lower Seam Extraction in Deep Mining

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng Wang ◽  
Zeqi Jie ◽  
Bo Ma ◽  
Weihao Zhu ◽  
Tong Chen

Pressure-relief coal mining provides an effective way to decrease stress concentration in deep mining and ensures mining safety. However, there is currently a lack of research and field verification on the pressure-relief efficiency and influencing factors during upper seam extraction on the lower seam. In order to make up for this deficiency, in this study, field measurements were conducted in panel Y485, which has a maximum depth of 1030 m and is partially under the goaf of the upper 5# seam in the Tangshan coal mine, China, and evolution of advanced abutment pressure was analyzed. Numerical simulations were conducted to study of influence of key strata on advanced abutment pressure. Influence mechanisms of the upper seam extraction on the advanced abutment pressure distribution during lower seam extraction were revealed. The results indicate that the distribution of advanced abutment stress is influenced by the key strata in the overlying strata. The key strata above the upper coal seam were fractured due to the upper coal seam mining, and the advanced abutment stress was only influenced by the key strata between the two seams during lower coal seam mining. When key strata were present between two seams, the extraction of the lower seam still faces potential dynamic disasters after the extraction of the upper seam. In this case, it would be necessary to fracture the key strata between the two seams in advance for the purpose of mining safety. Key strata in the overlying strata of the 5# seam were fractured during extraction, and advanced abutment pressure was only influenced by the key strata located between the two mined seams. The influence distance of advanced abutment pressure in panel Y485 decreased from 73 m to 38 m, and the distance between the peak advanced abutment pressure and the panel decreased from 29 m to 20.5 m, achieving a pronounced pressure-relief effect.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.





2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.



2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Fulian He ◽  
Xiaobin Li ◽  
Wenrui He ◽  
Yongqiang Zhao ◽  
Zhuhe Xu ◽  
...  

Longwall mechanized top coal caving mining (LMTCCM) in extra-thick coal seams has its own characteristics. The law of mining pressure and overlying strata failure height in extra-thick coal seams are much larger than those of medium-thick and thick coal seams. The key stratum structure morphology also has an important influence on the law of overlying strata movement and stability of surrounding rock. Based on the engineering geological conditions, this paper used the method of theoretical analysis and numerical simulation to study the key stratum structure morphology of LMTCCM in extra-thick coal seams. The results show that under the condition of LMTCCM in extra-thick coal seams, the key stratum forms the structure of low cantilever beam and high hinged rock beam. With the increase of coal seam thickness, the breaking position of cantilever beam is closer to the coal wall. Through theoretical calculation, it is obtained that the breaking length of cantilever beam is 31.5 m and the breaking position of cantilever beam is 15.4 m away from coal wall. With the increase of cycle, key strata will undergo the evolution law from the generation of longitudinal cracks to the hinged structure and then to the cantilever beam structure. The breakage of key strata will cause the expansion of longitudinal cracks and the overall synchronous movement of overlying strata. With the increase of coal seam thickness, the distribution of longitudinal cracks will gradually transfer from the upper part of goaf to the deep part of coal body in space and increase in quantity. This research is of great significance for improving the stability of overlying strata and ensuring the safe and efficient mining of extra-thick coal seams.



2011 ◽  
Vol 255-260 ◽  
pp. 3780-3785 ◽  
Author(s):  
Lei Yu ◽  
Zhi Zhong Fan ◽  
Gang Xu

The mine pressure behavior characters of shallow buried coal seam differed from both shallow seam mining and general depth seam. Mine pressure observation and numerical analysis were applied to research mine pressure behavior laws in fully mechanized face of shallow buried coal seam with thick bedrock and thin alluvium. It showed that the ground subsidence level phenomenon did not appear obviously although with obvious dynamic loading of fully mechanized face during the pressure period. The appearance was due to non-synchronized fracture from two key layers in the overlying rock layers and their interaction, which leaded to roof breaking initially and caving rocks with the form of an arch. Due to the periodic breaking and caving characteristics appearing as fully cut-down and arch alternately, the periodic pressure of shallow buried coal seam face showed as different size. The conclusion could be a reference for similar working face control.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gaochuan Guo ◽  
Yongkang Yang

The basis of traditional ground pressure and strata control techniques is the key strata theory, wherein the position of the key stratum can easily be determined for coal seams with regular thickness and without goaf. However, in the case of mining ultrathick coal seams underneath goaf, the traditional methods used for the calculation of key stratum position need to be improved in order to account for the additional coal seam thickness and the presence of an upper goaf. This study analyzed the failure height and collapse characteristics of overlying strata during excavation for determining the structure of the failed overlying strata. The results indicate that the intercalation and overlying strata gradually evolve into a large “arch structure” and a small “arch structure” during longwall mining, respectively. A mechanical model of the bearing characteristics of the interlayer key strata structure was established according to the structure of the intercalation rock layer, which is a hinged block structure. The results of the model indicate that the maximum principal stress occurs when the key strata portion of the arch structure bears the overlying load. Consequently, the movement and position of the interlayer key strata can be evaluated throughout the mining process of the ultrathick coal seams underneath goaf. This method was used to determine the position of interlayer key stratum of overlying strata in Xiegou coal mine. And the results agree with that of the engineering practice. The results are significant to determine the key strata position during ultrathick coal seam underneath goaf longwall mining.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dequan Sun ◽  
Xiaoyan Li ◽  
Zhijie Zhu ◽  
Yang Li ◽  
Fang Cui

The height of the fractured zone caused by coal mining is extremely significant for safely mining under water, water conservation, and gas treatment. At present, the common prediction methods of overburden fractured zone height are only applicable to thin and medium-thick coal seams, not suitable for thick and extra-thick coal seams. In order to determine the overburden fractured zone distribution characteristics of extra-thick seam mining, failure process analysis method of overlying strata was proposed based on key strata theory. This method was applied to 15 m coal seam of Tongxin coal mine, and fractured zone height was determined to be 174 m for 8100 panel. EH4 electromagnetic image system and borehole televiewer survey were also conducted to verify the theory results. The distribution of the electrical conductivity showed that the failure height was 150–170 m. Observation through the borehole televiewer showed that the fractured zone height was 171 m. The results of the two field test methods showed that the fractured zone height was 150–171 m, and it was consistent with the theory calculation results. Therefore, this failure process analysis method of overlying strata can be safely used for other coal mines.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Junmeng Li ◽  
Yanli Huang ◽  
Jixiong Zhang ◽  
Meng Li ◽  
Ming Qiao ◽  
...  

In order to analyze the impact of compound breakage of key strata on overlying strata movement and strata pressure behavior during the fully mechanized caving mining in shallow and extremely thick seams, this paper took the 1322 fully mechanized caving face in Jindi Coal Mine in Xing County as the engineering background. Under the special mining and geological condition mentioned above, UDEC numerical simulation software was applied to research the engineering problems, and results of numerical simulation were verified through the in-site measurement. The research results showed that during the fully mechanized caving mining in shallow and extremely thick seams, the inferior key strata affected by mining movement behaved in the mode of sliding instability and could not form the stable structure of the voussoir beam after breaking and caving. In addition, the main key strata behaved in the mode of rotary instability, and the caving rocks behind the goaf were gradually compacted because of the periodic instability of the main key strata. With the continuous advance of the working face, the abutment pressure of the working face was affected by the compound breakage and periodic instability of both the inferior key strata and the main key strata, and the peaks of the abutment pressure presented small-big-small-big periodical change characteristics. Meanwhile, the risk of rib spalling ahead of the working face presented different levels of acute or slowing trends. The actual measurement results of ground pressure in the working face showed that, in the working process, the first weighting interval of the inferior key strata was about 51 m and its average periodic weighting interval was about 12.6 m, both of which were basically consistent with the results of numerical simulation. The research has great significance in providing theoretical guidance and practical experience for predicting and controlling the ground pressure under the similar mining and geological conditions.



2011 ◽  
Vol 121-126 ◽  
pp. 2911-2916
Author(s):  
Guo Lei Liu ◽  
Ke Gong Fan ◽  
Tong Qiang Xiao

Through testing the mountainous shallow-buried coal seam mining working face strata behaviors in Faer mine field, it got the strata behaviors: it was of large roof pressure, high rate of safety valve opening in hydraulic support, and even some supports crushed or took separation between top beams and tail beams. Traditional method of calculating supports’ resistance can not be applied to mountainous shallow-buried coal seam mining working face. With the discrete element simulation software UDEC it analyzed the strata movement feature, and got that the overlying strata took collapse and horizontal displacement after mountainous shallow-buried coal seam mined, and the strata movement feature was different between reverse slope mining and positive slope mining.



Sign in / Sign up

Export Citation Format

Share Document