Analysis of Pressure Relief Effect on the Protective Layer of Hard Roof and Extra-Thickness Coal Seam Mining

2018 ◽  
Vol 37 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Zhongchang Wang ◽  
Wenrui Bian
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246199
Author(s):  
Shuhao Fang ◽  
Hongqing Zhu ◽  
Yujia Huo ◽  
Yilong Zhang ◽  
Haoran Wang ◽  
...  

To design underside protective seam strip layout. Similarity model experiments, numerical simulations and theoretical calculations are used to quantitatively study the pressure relief protection effect of different strip widths, dip angles and coal pillar widths of a thin underside protective seam under deeply buried conditions. The optimal strip width range is obtained according to the change law of strain during the mining process of the underside protective seam in a similar model experiment. The change law of the expansion of the protected coal seam is obtained and the fitting surfaces among the dip angle and strip width of the coal seam with the protection distance and pressure relief angle along the strike and dip of the protected coal seam are established according to the numerical simulation results of underside protective seam mining. It is concluded that the best pressure relief effect can be achieved when the dip angle is 16.7° and the strip width is 70 m. According to the stability threshold of coal pillars considered in strip mining theory, the coal pillar width is calculated to be 50 m. Similarity model experiments and numerical simulations of protected coal seam mining verify the pressure relief effect of the designed protective seam strip width and pillar width. A calculation method of the protective seam strip width, position and pillar width required by the specific width of the protected seam is proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiang He ◽  
Ke Yang ◽  
Penghua Han ◽  
Wenjie Liu ◽  
Zhonghao Zhang ◽  
...  

Coal 3 in group A is employed as a protective layer to release long-distance coal 4 in group B in Paner colliery (approximately 80 m vertical interval) as the mining depth extends downward, which is the first engineering test in the Huainan coal mining area. To evaluate the validity of the scheme, the permeability distribution, and evolution law, gas pressure distribution characteristics, swelling deformation, pressure relief range, and gas drainage volume of the protected coal seam are analyzed using a FLAC3D numerical simulation and field measurements. Therefore, different stress-permeability models are adopted for caved, fractured, and continuous deformation zones, and a double-yield model is applied in the goaf based on compaction theory to improve the accuracy of the numerical simulation. The results indicate that the extraction of coal 3 has a positive effect on permeability enhancement and pressure relief gas drainage. However, the dip angle of coal measurements causes asymmetric strata movement, which leads to the pressure relief and permeability enhancement area shifting to the downhill side, where the permeability enhancement effect of the downhill side is better than that of the uphill side. The permeability enhancement zone is an inverted trapezoid, but the effective pressure relief range is a positive trapezoid. The permeability of the protected coal seam in the pressure relief zone is significantly higher than that in the compressive failure zone. The permeability in the pressure relief zone will decrease again due to the recompaction of the coal seam with an advancement of the longwall face. Thus, pressure relief gas drainage is suggested during long-distance protective coal seam mining to eliminate gas hazards.


2012 ◽  
Vol 616-618 ◽  
pp. 565-568
Author(s):  
Bin Yu ◽  
Jun Zhao ◽  
Hong Chun Xia

This thesis briefly introduced roof control technology in fully-mechanized sublevel caving mining with hard roof and hard coal seam, Mining technology , gas prevention and comprehensive prevention and control technology in spontaneous combustion of coal, which in longwall top-coal caving face with hydraulic support in thickness seam in the Datong permo carboniferous coal seam . New development directions of fully-mechanized sublevel caving mining technology in the Datong mining area in the next few years.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Feng Wang ◽  
Zeqi Jie ◽  
Bo Ma ◽  
Weihao Zhu ◽  
Tong Chen

Pressure-relief coal mining provides an effective way to decrease stress concentration in deep mining and ensures mining safety. However, there is currently a lack of research and field verification on the pressure-relief efficiency and influencing factors during upper seam extraction on the lower seam. In order to make up for this deficiency, in this study, field measurements were conducted in panel Y485, which has a maximum depth of 1030 m and is partially under the goaf of the upper 5# seam in the Tangshan coal mine, China, and evolution of advanced abutment pressure was analyzed. Numerical simulations were conducted to study of influence of key strata on advanced abutment pressure. Influence mechanisms of the upper seam extraction on the advanced abutment pressure distribution during lower seam extraction were revealed. The results indicate that the distribution of advanced abutment stress is influenced by the key strata in the overlying strata. The key strata above the upper coal seam were fractured due to the upper coal seam mining, and the advanced abutment stress was only influenced by the key strata between the two seams during lower coal seam mining. When key strata were present between two seams, the extraction of the lower seam still faces potential dynamic disasters after the extraction of the upper seam. In this case, it would be necessary to fracture the key strata between the two seams in advance for the purpose of mining safety. Key strata in the overlying strata of the 5# seam were fractured during extraction, and advanced abutment pressure was only influenced by the key strata located between the two mined seams. The influence distance of advanced abutment pressure in panel Y485 decreased from 73 m to 38 m, and the distance between the peak advanced abutment pressure and the panel decreased from 29 m to 20.5 m, achieving a pronounced pressure-relief effect.


2021 ◽  
Vol 24 (4) ◽  
pp. 499-506
Author(s):  
Xiaoping Xie ◽  
Xinqiu Fang ◽  
Minfu Liang ◽  
Dechun Ai

Under the influence of geological structure, the surrounding rock of semi-coal seam is easy to be loose and fractured, and the repairing rate is high. Therefore, it is of great theoretical and practical significance to study semi-coal seam mining's mechanism and control technology. In this paper, the geological evolution principle of the semi-coal seam is analyzed theoretically. The mechanic's relationship between the mining height of the semi-coal face and the lower coal seam's pressure relief is interpreted. The mechanism of eliminating bad blind areas in non-pillar mining of upper protective seam is analyzed. Through numerical simulation analysis, it is concluded that the expansion deformation rate of a protective layer increases linearly with the increase of mining thickness of the protective layer, and the width of undesirable blind zone of coal seam increases linearly with the rise of protective layer thickness. This paper puts forward the technology of non-pillar mining in the protective seam's semi-coal and rock face. Field industrial test results show that the technology achieves the overall pressure relief and reflection reduction of low permeability and high gas coal seams. The underlying 3 + 4 protective layer achieves the general pressure relief and reflection reduction of low permeability and high gas coal seams. Coalbed methane can be pre-drained up to 18 m3/min with a concentration of 90%.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haibo Liu ◽  
Xucheng Xiao ◽  
Zhihang Shu

No. 21 coal seam is a full-thickness structured soft coal in Dengfeng coalfield. The coal seam gas-bearing capacity is high, and the permeability is poor, thus resulting in serious coal and gas outburst dynamic disasters. According to the gas geological conditions of Baoyushan Mine, No. 17 coal seam without outburst danger, which is 0.5 m thick and 23.4 m under No. 21 coal seam, was mined in advance as the lower protective seam. At the same time, a gas extraction roadway was constructed in No. 21 coal seam floor. Cross-layer boreholes were constructed to extract the pressure relief gas of No. 21 coal seam for comprehensive treatment of mine gas. The mobile deformation of the overburden coal and rock mass after mining No. 17 coal seam, the fracture development characteristics of No. 21 coal seam, the pressure relief gas migration of the coal seam, the gas extraction, and the outburst danger elimination were studied. The research findings showed the following: (1) after mining No. 17 coal seam, the overburden hard and extremely thick limestone roof sagged slowly, albeit leading to no craving zone. (2) The permeability of No. 21 coal seam was increased by about 394 times, from 0.0012 mD to 0.4732 mD. (3) After the extraction of pressure relief gas through the gas extraction roadway on the floor through the cross-layer borehole, the gas pressure of No. 21 coal seam decreased from 1.17 MPa to 0.12 MPa, while the gas content decreased from 9.74 m3/t to 3.1 m3/t, which suggested that the coal and gas outburst dynamic danger of No. 21 coal seam was totally eliminated and the goal of safe and efficient mining in the mine was realized.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2470 ◽  
Author(s):  
Yiwen Lan ◽  
Rui Gao ◽  
Bin Yu ◽  
Xiangbin Meng

The movements of overburden induced by mining a thick coal seam with a hard roof extend widely. The effects of breakages in the hard strata on the strata behaviors might vary with the overlying strata layers. For this reason, we applied a test method that integrated a borehole TV tester, borehole-based monitoring of strata movement, and monitoring of support resistance for an in situ investigation of a super-thick, 14–20 m coal seam mining in the Datong mining area in China. The results showed that the range of the overburden movement was significantly high, which could reach to more than 300 m. The key strata (KS) in the lower layer main roof were broken into a ‘cantilever beam and voussoir beam’ structure. This structure accounted for the ‘long duration and short duration’ strata behaviors in the working face. On the other hand, the hard KS in the upper layer broke into a ‘high layer structure’. The structural instability induced intensive and wide-ranging strata behaviors that lasted for a long time (two to three days). Support in the working face were over-pressured by large dynamic factors and were widely crushed, while the roadways were violently deformed. Hence, the structure of a thick coal seam with a hard roof after mining will form a ‘cantilever beam and voussoir beam and high layer structure’, which is unique to a large space stope.


2014 ◽  
Vol 875-877 ◽  
pp. 1863-1870 ◽  
Author(s):  
Jian Liu ◽  
Jie Zhao ◽  
Ming Song Gao

By study on underlying coal and strata pressure-relief principle and the gas extraction technique under upper protective layer mining, we obtain the stress change and distribution law of underlying coal-rock mass. We analyze the deformation law and fracture development characteristics of underlying coal-rock mass movement. With mining proceeding ahead, the total floor coal and rock experiences compression deformation first, then expansion deformation and re-compaction of the continuous periodic destruction. Based on different development characteristics and status of underlying coal-rock mass, the underlying coal-rock mass under an effect of upper protective layer mining was divided into the floor heave fracture zone and the floor heave deformation zone in this paper. The permeability coefficient of change law of underlying the coal seam as follows: the original value-small decreasing-increasing greatly-reducing-stability at last. The field test for upper protective layer mining of Zhang-ji coal mine of Huainan shows that the effect of pressure relief of protected seam is very good. So it eliminates the risk of gas outburst, ensuring safety mining of the protected seam. The research has an important significance for safety and efficient production under similar exploitation conditions of low-permeability with high gas and outburst risk coal seam.


Sign in / Sign up

Export Citation Format

Share Document