scholarly journals Research on Distributed In-Vehicle Wireless Self-Organized Routing Protocol Distribution Mechanism

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinyu Cui ◽  
Guifen Chen

In recent years, the application of intelligent transportation systems has gradually made the transportation industry safe, efficient, and environmentally friendly and has led to a broader research prospect of vehicle wireless communication technology. Distributed vehicular self-organizing networks are mobile self-organizing networks in realistic traffic situations. Data interaction and transmission between nodes are achieved through the establishment of a vehicular self-organizing network. In this paper, a multipath routing protocol considering path stability and load balancing is proposed to address the shortcomings of existing distributed vehicular wireless self-organizing routing protocols. This protocol establishes three loop-free paths in the route discovery phase and uses the path stability parameter and load level parameter together to measure the total transmission cost. The one with the lowest total transmission cost is selected as the highest priority path for data transmission in the route selection phase, and the other two are used as alternate paths, and when the primary path breaks, the higher priority of the remaining path will continue to transmit data as the primary route. In this paper, to improve the content distribution performance of target vehicles in scenarios where communication blind zones exist between adjacent roadside units, an assisted download distribution mechanism for video-like large file content is designed in the V2V and V2I cooperative communication regime. That is, considering a two-way lane scenario, we use the same direction driving vehicles to build clusters, reverse driving vehicles to carry prefetched data, and build clusters to forward prefetched data to improve the data download volume of target vehicles in nonhot scenarios such as highways with the sparse deployment of roadside units, to meet the data volume download demand of in-vehicle users for large files and give guidance for efficient distribution of large file content in highway scenarios.

2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiang Ji ◽  
Huiqun Yu ◽  
Guisheng Fan ◽  
Huaiying Sun ◽  
Liqiong Chen

Vehicular ad hoc network (VANET) is an emerging technology for the future intelligent transportation systems (ITSs). The current researches are intensely focusing on the problems of routing protocol reliability and scalability across the urban VANETs. Vehicle clustering is testified to be a promising approach to improve routing reliability and scalability by grouping vehicles together to serve as the foundation for ITS applications. However, some prominent characteristics, like high mobility and uneven spatial distribution of vehicles, may affect the clustering performance. Therefore, how to establish and maintain stable clusters has become a challenging problem in VANETs. This paper proposes a link reliability-based clustering algorithm (LRCA) to provide efficient and reliable data transmission in VANETs. Before clustering, a novel link lifetime-based (LLT-based) neighbor sampling strategy is put forward to filter out the redundant unstable neighbors. The proposed clustering scheme mainly composes of three parts: cluster head selection, cluster formation, and cluster maintenance. Furthermore, we propose a routing protocol of LRCA to serve the infotainment applications in VANET. To make routing decisions appropriate, we nominate special nodes at intersections to evaluate the network condition by assigning weights to the road segments. Routes with the lowest weights are then selected as the optimal data forwarding paths. We evaluate clustering stability and routing performance of the proposed approach by comparing with some existing schemes. The extensive simulation results show that our approach outperforms in both cluster stability and data transmission.


2018 ◽  
Vol 22 (2) ◽  
pp. 120-128
Author(s):  
Rohmah Nur Hidayah ◽  
Indrabayu Indrabayu ◽  
Intan Sari Areni

Intelligent Transportation Systems (ITS) menawarkan paradigma pemodelan baru yang mendukung komunikasi antar kendaraan secara real time menggunakan routing protocol yang disebut Vehicular Ad Hoc Network (VANET). Pada dasarnya kinerja routing protocol dipengaruhi oleh arus dan aturan lalu lintas yang bersifat dinamis sehingga perubahan tersebut akan menyebabkan perubahan pada kinerja routing protocol juga. Untuk itu, penelitian ini mengusulkan rancangan mobilitas realistis berdasarkan data makroskopis dan mikroskopis jalan perkotaan. Rancangan mobilitas dibagi menjadi 2 skenario berdasarkan kepadatan kendaraan, yaitu 125 dan 200 node. Penelitian ini bersifat simulasi dan dibagi menjadi 2 tahap. Tahap pertama yaitu simulasi mobilitas yang menunjukkan pergerakan kendaraan serta aturan lalu lintas yang disesuaikan dengan kondisi realistis. Tahap kedua adalah simulasi jaringan yang bertujuan untuk mengevaluasi kinerja routing protocol DSDV dan OLSR terhadap rancangan model mobilitas. Untuk menguji kinerja kedua  routing protocol, maka digunakan 3 metrik pengujian yaitu Packet Delivery Ratio (PDR), Overhead Ratio (OR) dan End to End Delay (E2ED). Hasil simulasi menunjukkan OLSR unggul pada metrik PDR dan OR, yaitu masing-masing 88.62% dan 57.11%. Sedangkan E2ED terbaik ditunjukkan oleh DSDV dengan nilai 0.523 detik. Kinerja terbaik kedua routing protocol ditunjukkan pada skenario 125 node. Hal ini menunjukkan kedua routing protocol belum mampu mengatasi kondisi lalu lintas perkotaan yang sangat padat.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251548
Author(s):  
Qing Liang ◽  
Tian Lin ◽  
Feng Wu ◽  
Fan Zhang ◽  
Wei Xiong

The two most essential factors for mobile self-organizing networks applicable to drones are reliability and stability. In harsh communication environments, such as mountainous regions and natural disasters, the use of satellites and terrestrial communication stations has severe time delays due to the high speed of UAVs, resulting in frequent communication interruptions with UAVs. Therefore, UAVs need to establish self-organizing networks for communication and information sharing. High-speed movement will lead to rapid changes in the network topology, resulting in established links being in an unstable connection state and even frequent routing errors, thus preventing the establishment of stable communication links. In order to improve the communication quality of UAVs under high-speed movement, we propose a dynamic source routing protocol based on path reliability and monitoring repair mechanism (DSR-PM). The model performs data transmission by filtering the best reliability path. The link state information is monitored during transmission and broken links are repaired in time to ensure the communication stability and reliability of the links and improve the data transmission efficiency. We simulated the approach in NS2 software and the simulation results show that the DSR-PM protocol effectively reduces parameters such as overhead, packet loss and delay, improves network throughput, and provides better communication performance.


Sign in / Sign up

Export Citation Format

Share Document