scholarly journals Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yong Wang ◽  
Liang Zhang ◽  
Lin Qi ◽  
Xiaoping Yi ◽  
Minghao Li ◽  
...  

Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research. Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound. With the quantitative imaging analysis and model building, radiomics can reflect specific underlying characteristics of a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade. In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of radiomics in endocrine neoplasms in recent years. The limitations of current radiomic research studies and future development directions would also be discussed.

2017 ◽  
Vol 27 (4) ◽  
pp. 609-620 ◽  
Author(s):  
John M. Billings ◽  
Maxwell Eder ◽  
William C. Flood ◽  
Devendra Singh Dhami ◽  
Sriraam Natarajan ◽  
...  

Pituitary ◽  
2020 ◽  
Vol 23 (3) ◽  
pp. 273-293 ◽  
Author(s):  
Ashirbani Saha ◽  
Samantha Tso ◽  
Jessica Rabski ◽  
Alireza Sadeghian ◽  
Michael D. Cusimano

Author(s):  
Zhenwei Shi ◽  
Zhen Zhang ◽  
Zaiyi Liu ◽  
Lujun Zhao ◽  
Zhaoxiang Ye ◽  
...  

Abstract Purpose Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines. Methods A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality. Results Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 “good” item ratings. Conclusion A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.


2019 ◽  
Author(s):  
Qiannan Duan ◽  
Jianchao Lee ◽  
Jinhong Gao ◽  
Jiayuan Chen ◽  
Yachao Lian ◽  
...  

<p>Machine learning (ML) has brought significant technological innovations in many fields, but it has not been widely embraced by most researchers of natural sciences to date. Traditional understanding and promotion of chemical analysis cannot meet the definition and requirement of big data for running of ML. Over the years, we focused on building a more versatile and low-cost approach to the acquisition of copious amounts of data containing in a chemical reaction. The generated data meet exclusively the thirst of ML when swimming in the vast space of chemical effect. As proof in this study, we carried out a case for acute toxicity test throughout the whole routine, from model building, chip preparation, data collection, and ML training. Such a strategy will probably play an important role in connecting ML with much research in natural science in the future.</p>


2020 ◽  
Vol 20 (14) ◽  
pp. 1375-1388 ◽  
Author(s):  
Patnala Ganga Raju Achary

The scientists, and the researchers around the globe generate tremendous amount of information everyday; for instance, so far more than 74 million molecules are registered in Chemical Abstract Services. According to a recent study, at present we have around 1060 molecules, which are classified as new drug-like molecules. The library of such molecules is now considered as ‘dark chemical space’ or ‘dark chemistry.’ Now, in order to explore such hidden molecules scientifically, a good number of live and updated databases (protein, cell, tissues, structure, drugs, etc.) are available today. The synchronization of the three different sciences: ‘genomics’, proteomics and ‘in-silico simulation’ will revolutionize the process of drug discovery. The screening of a sizable number of drugs like molecules is a challenge and it must be treated in an efficient manner. Virtual screening (VS) is an important computational tool in the drug discovery process; however, experimental verification of the drugs also equally important for the drug development process. The quantitative structure-activity relationship (QSAR) analysis is one of the machine learning technique, which is extensively used in VS techniques. QSAR is well-known for its high and fast throughput screening with a satisfactory hit rate. The QSAR model building involves (i) chemo-genomics data collection from a database or literature (ii) Calculation of right descriptors from molecular representation (iii) establishing a relationship (model) between biological activity and the selected descriptors (iv) application of QSAR model to predict the biological property for the molecules. All the hits obtained by the VS technique needs to be experimentally verified. The present mini-review highlights: the web-based machine learning tools, the role of QSAR in VS techniques, successful applications of QSAR based VS leading to the drug discovery and advantages and challenges of QSAR.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 3 (2) ◽  
pp. 392-413
Author(s):  
Stefan Studer ◽  
Thanh Binh Bui ◽  
Christian Drescher ◽  
Alexander Hanuschkin ◽  
Ludwig Winkler ◽  
...  

Machine learning is an established and frequently used technique in industry and academia, but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners face manifold challenges and risks when developing machine learning applications and have a need for guidance to meet business expectations. This paper therefore proposes a process model for the development of machine learning applications, covering six phases from defining the scope to maintaining the deployed machine learning application. Business and data understanding are executed simultaneously in the first phase, as both have considerable impact on the feasibility of the project. The next phases are comprised of data preparation, modeling, evaluation, and deployment. Special focus is applied to the last phase, as a model running in changing real-time environments requires close monitoring and maintenance to reduce the risk of performance degradation over time. With each task of the process, this work proposes quality assurance methodology that is suitable to address challenges in machine learning development that are identified in the form of risks. The methodology is drawn from practical experience and scientific literature, and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support, but fails to address machine learning specific tasks. The presented work proposes an industry- and application-neutral process model tailored for machine learning applications with a focus on technical tasks for quality assurance.


Sign in / Sign up

Export Citation Format

Share Document