scholarly journals Significance of Thermophoretic and Brownian Motion on MHD Nanofluids Flow towards a Circular Cylinder under the Inspiration of Multiple Slips: An Industrial Application

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Aaqib Majeed ◽  
Muhammad Zubair ◽  
Adnan Khan ◽  
Taseer Muhammad ◽  
M.S. Alqarni

In this article, MHD flow of silver/water nanofluid past a stretched cylinder under the impact of thermal radiation with chemical reaction and slip condition is studied. The impact of Soret and Dufour effect is also analyzed during this flow. The uniqueness of the given problem is enlarged with the insertion of variable magnetic field, free stream velocity, thermal slip condition, and nonlinear thermal radiation. The PDEs are converted to ODEs by using suitable similarity transformation. The nonlinear system of ODEs is solved by applying convergent homotopy analysis method (HAM). The velocity, temperature, and concentration profiles for the free stream and at the plate are discussed through graphs and numerical tables. It is found that velocity field reduces, while the temperature profile rises for the increasing values of magnetic parameter. It is examined that effects of curvature on frication factor are increasing. Furthermore, temperature profile increases for greater Brownian motion and thermophoresis parameters. Transfer of heat enhances decreasing the radius of the cylinder also with heat generation parameter. The skin friction can be reduced by enhancing free stream and wall stretching velocities ratio. Velocity profile of the flow can be controlled by enhancing velocity slip and magnetic field.

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Muhammad Jawad ◽  
Zahir Shah ◽  
Saeed Islam ◽  
Jihen Majdoubi ◽  
I. Tlili ◽  
...  

The aim of this article is to study time dependent rotating single-wall electrically conducting carbon nanotubes with aqueous suspensions under the influence of nonlinear thermal radiation in a permeable medium. The impact of viscous dissipation is taken into account. The basic governing equations, which are in the form of partial differential equations (PDEs), are transformed to a set of ordinary differential equations (ODEs) suitable for transformations. The homotopy analysis method (HAM) is applied for the solution. The effect of numerous parameters on the temperature and velocity fields is explanation by graphs. Furthermore, the action of significant parameters on the mass transportation and the rates of fiction factor are determined and discussed by plots in detail. The boundary layer thickness was reduced by a greater rotation rate parameter in our established simulations. Moreover, velocity and temperature profiles decreased with increases of the unsteadiness parameter. The action of radiation phenomena acts as a source of energy to the fluid system. For a greater rotation parameter value, the thickness of the thermal boundary layer decreases. The unsteadiness parameter rises with velocity and the temperature profile decreases. Higher value of augments the strength of frictional force within a liquid motion. For greater and ; the heat transfer rate rises. Temperature profile reduces by rising values of .


2017 ◽  
Vol 95 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Mohamed S. Abdel-wahed

A numerical investigation has been done to study the impact of nonlinear magnetic field, nonlinear thermal radiation, variable thickness, and Brownian motion on flow and heat transfer characteristics (i.e., skin friction and surface heat flux) as a physical application. Moreover, the impact of these forces on the rate of cooling and the mechanical properties (i.e., hardness, ductility, …) of a surface that is cooled using nanofluid as a coolant is explored. The governing boundary layer equations describing the problem are transformed to ordinary differential equations using the similarity transformation method and are then solved numerically using the fourth-order Runge–Kutta method with shooting technique with the assistance of Mathematica program.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


2020 ◽  
Vol 30 (9) ◽  
pp. 4331-4347 ◽  
Author(s):  
Ambreen A. Khan ◽  
S. Naeem ◽  
R. Ellahi ◽  
Sadiq M. Sait ◽  
K. Vafai

Purpose This study aims to investigate the effect of two-dimensional Darcy-Forchheimer flow over second-grade fluid with linear stretching. Heat transfer through convective boundary conditions is taken into account. Design/methodology/approach Nonlinear coupled governing equations are tackled with a homotopy algorithm, while for numerical computation the computer software package BVPh 2.0 is used. The convergence analysis is also presented for the validation of analytical and numerical results. Findings Valuation for the impact of key parameters such as variable thermal conductivity, Dufour and Soret effects and variable magnetic field in an electrically conducted fluid on the velocity, concentration and temperature profiles are graphically illustrated. It is observed from the results that temperature distribution rises by Dufour number whereas concentration distribution rises by Soret number. The Forchheimer number and porosity parameter raise the skin friction coefficient. The permeable medium has a vital impact and can help in reining the rate of heat transfer. Practical implications The permeable medium has a vital impact and can help in reining the rate of heat transfer. Originality/value To the best of the authors’ knowledge, this study is reported for the first time.


1970 ◽  
Vol 5 (1) ◽  
pp. 11-18 ◽  
Author(s):  
MA Alim ◽  
MM Rahman ◽  
MM Karim

The points of separation of magneto-hydrodynamic mixed convection boundary layer flow along a vertical plate have been investigated. The free stream velocity is considered decreasing exponentially in the stream wise direction. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to local non-similar boundary layer equations, which are solved numerically by implicit finite difference method known as Keller box scheme. Here we have focused our attention to find the effects of suction, magnetic field and other relevant physical parameters on the position of boundary layer separation. The numerical results are expressed in terms of local shear stress showing the effects of suction, buoyancy, Prandlt number and magnetic field on the shear stress as well as on the points of separation. Keywords: Separation points, magneto-hydrodynamic, mixed convection, boundary layer, suction, finite difference method, Keller box scheme.   doi:10.3329/jname.v5i1.1868Journal of Naval Architecture and Marine Engineering Vol. 5, No. 1 (June, 2008) 11-18. 


1960 ◽  
Vol 9 (2) ◽  
pp. 235-246 ◽  
Author(s):  
J. W. Elder

The theory of hydrodynamic stability and the impact on it of recent work with turbulent spots is discussed. Emmons's (1951) assumptions about the growth and interaction of turbulent spots are found experimentally to be substantially correct. In particular it is shown that the region of turbulent flow on a flat plate is simply the sum of the areas that would be obtained if all spots grew independently.An investigation of the conditions required for breakdown to turbulence near a wall, that is, to initiate a turbulent spot, suggests that regardless of how disturbances are generated in a laminar boundary layer and independent of both the Reynolds number and the spatial extent of the disturbances, breakdown to turbulence occurs by the initiation of a turbulent spot at all points at which the velocity fluctuation exceeds a critical intensity. Over most of the layer this intensity is about 0·2 times the free-stream velocity. The Reynolds number is important merely in respect of the growth of disturbances prior to breakdown.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tapas Ray Mahapatra ◽  
Sabyasachi Mondal ◽  
Dulal Pal

An analysis is made on the study of two-dimensional MHD (magnetohydrodynamic) boundary-layer stagnation-point flow of an electrically conducting power-law fluid over a stretching surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point in the presence of thermal radiation and suction/injection. The paper examines heat transfer in the stagnation-point flow of a power-law fluid except when the ratio of the free stream velocity and stretching velocity is equal to unity. The governing partial differential equations along with the boundary conditions are first brought into a dimensionless form and then the equations are solved by Runge-Kutta fourth-order scheme with shooting techniques. It is found that the temperature at a point decreases/increases with increase in the magnetic field when free stream velocity is greater/less than the stretching velocity. It is further observed that for a given value of the magnetic parameter M, the dimensionless rate of heat transfer at the surface and |θ′(0)| decreases/increases with increase in the power-law index n. Further, the temperature at a point in the fluid decreases with increase in the radiation parameter NR when free stream velocity is greater/less than the stretching velocity.


Sign in / Sign up

Export Citation Format

Share Document