scholarly journals Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jinfeng Wang ◽  
Muye Pang ◽  
Peixuan Yu ◽  
Biwei Tang ◽  
Kui Xiang ◽  
...  

Surface electromyography- (sEMG-) based hand grasp force estimation plays an important role with a promising accuracy in a laboratory environment, yet hardly clinically applicable because of physiological changes and other factors. One of the critical factors is the muscle fatigue concomitant with daily activities which degrades the accuracy and reliability of force estimation from sEMG signals. Conventional qualitative measurements of muscle fatigue contribute to an improved force estimation model with limited progress. This paper proposes an easy-to-implement method to evaluate the muscle fatigue quantitatively and demonstrates that the proposed metrics can have a substantial impact on improving the performance of hand grasp force estimation. Specifically, the reduction in the maximal capacity to generate force is used as the metric of muscle fatigue in combination with a back-propagation neural network (BPNN) is adopted to build a sEMG-hand grasp force estimation model. Experiments are conducted in the three cases: (1) pooling training data from all muscle fatigue states with time-domain feature only, (2) employing frequency domain feature for expression of muscle fatigue information based on case 1, and 3) incorporating the quantitative metric of muscle fatigue value as an additional input for estimation model based on case 1. The results show that the degree of muscle fatigue and task intensity can be easily distinguished, and the additional input of muscle fatigue in BPNN greatly improves the performance of hand grasp force estimation, which is reflected by the 6.3797% increase in R2 (coefficient of determination) value.

2021 ◽  
Vol 13 (10) ◽  
pp. 2003
Author(s):  
Daeyong Jin ◽  
Eojin Lee ◽  
Kyonghwan Kwon ◽  
Taeyun Kim

In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a.


Author(s):  
Wael H. Awad ◽  
Bruce N. Janson

Three different modeling approaches were applied to explain truck accidents at interchanges in Washington State during a 27-month period. Three models were developed for each ramp type including linear regression, neural networks, and a hybrid system using fuzzy logic and neural networks. The study showed that linear regression was able to predict accident frequencies that fell within one standard deviation from the overall mean of the dependent variable. However, the coefficient of determination was very low in all cases. The other two artificial intelligence (AI) approaches showed a high level of performance in identifying different patterns of accidents in the training data and presented a better fit when compared to the regression model. However, the ability of these AI models to predict test data that were not included in the training process showed unsatisfactory results.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1036
Author(s):  
Fuyuan Liao ◽  
Xueyan Zhang ◽  
Chunmei Cao ◽  
Isabella Yu-Ju Hung ◽  
Yanni Chen ◽  
...  

This study aimed to investigate the degree of regularity of surface electromyography (sEMG) signals during muscle fatigue during dynamic contractions and muscle recovery after cupping therapy. To the best of our knowledge, this is the first study assessing both muscle fatigue and muscle recovery using a nonlinear method. Twelve healthy participants were recruited to perform biceps curls at 75% of the 10 repetitions maximum under four conditions: immediately and 24 h after cupping therapy (−300 mmHg pressure), as well as after sham control (no negative pressure). Cupping therapy or sham control was assigned to each participant according to a pre-determined counter-balanced order and applied to the participant’s biceps brachii for 5 min. The degree of regularity of the sEMG signal during the first, second, and last 10 repetitions (Reps) of biceps curls was quantified using a modified sample entropy (Ems) algorithm. When exercise was performed immediately or 24 h after sham control, Ems of the sEMG signal showed a significant decrease from the first to second 10 Reps; when exercise was performed immediately after cupping therapy, Ems also showed a significant decrease from the first to second 10 Reps but its relative change was significantly smaller compared to the condition of exercise immediately after sham control. When exercise was performed 24 h after cupping therapy, Ems did not show a significant decrease, while its relative change was significantly smaller compared to the condition of exercise 24 h after sham control. These results indicated that the degree of regularity of sEMG signals quantified by Ems is capable of assessing muscle fatigue and the effect of cupping therapy. Moreover, this measure seems to be more sensitive to muscle fatigue and could yield more consistent results compared to the traditional linear measures.


Author(s):  
Y. A. Lumban-Gaol ◽  
K. A. Ohori ◽  
R. Y. Peters

Abstract. Satellite-Derived Bathymetry (SDB) has been used in many applications related to coastal management. SDB can efficiently fill data gaps obtained from traditional measurements with echo sounding. However, it still requires numerous training data, which is not available in many areas. Furthermore, the accuracy problem still arises considering the linear model could not address the non-relationship between reflectance and depth due to bottom variations and noise. Convolutional Neural Networks (CNN) offers the ability to capture the connection between neighbouring pixels and the non-linear relationship. These CNN characteristics make it compelling to be used for shallow water depth extraction. We investigate the accuracy of different architectures using different window sizes and band combinations. We use Sentinel-2 Level 2A images to provide reflectance values, and Lidar and Multi Beam Echo Sounder (MBES) datasets are used as depth references to train and test the model. A set of Sentinel-2 and in-situ depth subimage pairs are extracted to perform CNN training. The model is compared to the linear transform and applied to two other study areas. Resulting accuracy ranges from 1.3 m to 1.94 m, and the coefficient of determination reaches 0.94. The SDB model generated using a window size of 9x9 indicates compatibility with the reference depths, especially at areas deeper than 15 m. The addition of both short wave infrared bands to the four visible bands in training improves the overall accuracy of SDB. The implementation of the pre-trained model to other study areas provides similar results depending on the water conditions.


2019 ◽  
Vol 11 (6) ◽  
pp. 627 ◽  
Author(s):  
Kunsheng Xiang ◽  
Xiaofeng Yang ◽  
Miao Zhang ◽  
Ziwei Li ◽  
Fanping Kong

A method of estimating tropical cyclone (TC) intensity based on Haiyang-2A (HY-2A) scatterometer, and Special Sensor Microwave Imager and Sounder (SSMIS) observations over the northwestern Pacific Ocean is presented in this paper. Totally, 119 TCs from the 2012 to 2017 typhoon seasons were selected, based on satellite-observed data and China Meteorological Administration (CMA) TC best track data. We investigated the relationship among the TC maximum-sustained wind (MSW), the microwave brightness temperature (TB), and the sea surface wind speed (SSW). Then, a TC intensity estimation model was developed, based on a multivariate linear regression using the training data of 96 TCs. Finally, the proposed method was validated using testing data from 23 other TCs, and its root mean square error (RMSE), mean absolute error (MAE), and bias were 5.94 m/s, 4.62 m/s, and −0.43 m/s, respectively.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 174940-174950 ◽  
Author(s):  
Yan Chen ◽  
Song Yu ◽  
Ke Ma ◽  
Shuangyuan Huang ◽  
Guofeng Li ◽  
...  

Author(s):  
Kiran Marri ◽  
Ramakrishnan Swaminathan

Muscle fatigue is a neuromuscular condition experienced during daily activities. This phenomenon is generally characterized using surface electromyography (sEMG) signals and has gained a lot of interest in the fields of clinical rehabilitation, prosthetics control, and sports medicine. sEMG signals are complex, nonstationary and also exhibit self-similarity fractal characteristics. In this work, an attempt has been made to differentiate sEMG signals in nonfatigue and fatigue conditions during dynamic contraction using multifractal analysis. sEMG signals are recorded from biceps brachii muscles of 42 healthy adult volunteers while performing curl exercise. The signals are preprocessed and segmented into nonfatigue and fatigue conditions using the first and last curls, respectively. The multifractal detrended moving average algorithm (MFDMA) is applied to both segments, and multifractal singularity spectrum (SSM) function is derived. Five conventional features are extracted from the singularity spectrum. Twenty-five new features are proposed for analyzing muscle fatigue from the multifractal spectrum. These proposed features are adopted from analysis of sEMG signals and muscle fatigue studies performed in time and frequency domain. These proposed 25 feature sets are compared with conventional five features using feature selection methods such as Wilcoxon rank sum, information gain (IG) and genetic algorithm (GA) techniques. Two classification algorithms, namely, k-nearest neighbor (k-NN) and logistic regression (LR), are explored for differentiating muscle fatigue. The results show that about 60% of the proposed features are statistically highly significant and suitable for muscle fatigue analysis. The results also show that eight proposed features ranked among the top 10 features. The classification accuracy with conventional features in dynamic contraction is 75%. This accuracy improved to 88% with k-NN-GA combination with proposed new feature set. Based on the results, it appears that the multifractal spectrum analysis with new singularity features can be used for clinical evaluation in varied neuromuscular conditions, and the proposed features can also be useful in analyzing other physiological time series.


2020 ◽  
pp. 2150016
Author(s):  
Navaneethakrishna Makaram ◽  
P. A. Karthick ◽  
Venugopal Gopinath ◽  
Ramakrishnan Swaminathan

Surface electromyography (sEMG) is a non-invasive technique to assess the electrical activity of contracting skeletal muscles. sEMG-based muscle fatigue detection plays a key role in sports medicine, ergonomics and rehabilitation. These signals are random, multicomponent, nonlinear and the degree of fluctuations is higher in dynamic contractions. Hence, the extraction of reliable biomarkers remains a challenging task. In this work, an attempt has been made to differentiate non-fatigue, and fatigue conditions using nonlinear techniques, namely, binary and weighted Visibility Graph (VG) features. For this, signals are recorded from the biceps brachii muscle of 52 healthy adult volunteers. These signals are preprocessed, and the contractions associated with the non-fatigue and fatigue conditions are segmented. The graph transformation is performed, and first-order and second-order statistics, along with entropy measures, are extracted from the degree distribution. Parametric and non-parametric machine learning methods are applied for the classification. The results show that the proposed VG approach is able to capture the fluctuations of the signals in non-fatigue and fatigue conditions. Further, all extracted features exhibit a significant difference with [Formula: see text] [Formula: see text]. Maximum accuracy of 89.1% is achieved with information gain selected features and extreme learning machines classifier. Additionally, weighted VG features perform better than the binary version with a difference in the accuracy of 5%. It appears that the proposed approach could be used in real-time implementation for the monitoring of muscle fatigue conditions.


Sign in / Sign up

Export Citation Format

Share Document