scholarly journals Dynamic Vision Sensor Tracking Method Based on Event Correlation Index

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hengyi Lv ◽  
Yang Feng ◽  
Yisa Zhang ◽  
Yuchen Zhao

Dynamic vision sensor is a kind of bioinspired sensor. It has the characteristics of fast response, large dynamic range, and asynchronous output event stream. These characteristics make it have advantages that traditional image sensors do not have in the field of tracking. The output form of the dynamic vision sensor is asynchronous event stream, and the object information needs to be provided by the relevant event cluster. This article proposes a method based on the event correlation index to obtain the object’s position, contour, and other information and is compatible with traditional tracking methods. Experiments show that this method can obtain the position information of the moving object and its continuous motion trajectory and analyze the influence of the parameters on the tracking effect. This method will have broad application prospects in security, transportation, etc.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guang Chen ◽  
Hu Cao ◽  
Muhammad Aafaque ◽  
Jieneng Chen ◽  
Canbo Ye ◽  
...  

Neuromorphic vision sensor is a new passive sensing modality and a frameless sensor with a number of advantages over traditional cameras. Instead of wastefully sending entire images at fixed frame rate, neuromorphic vision sensor only transmits the local pixel-level changes caused by the movement in a scene at the time they occur. This results in advantageous characteristics, in terms of low energy consumption, high dynamic range, sparse event stream, and low response latency, which can be very useful in intelligent perception systems for modern intelligent transportation system (ITS) that requires efficient wireless data communication and low power embedded computing resources. In this paper, we propose the first neuromorphic vision based multivehicle detection and tracking system in ITS. The performance of the system is evaluated with a dataset recorded by a neuromorphic vision sensor mounted on a highway bridge. We performed a preliminary multivehicle tracking-by-clustering study using three classical clustering approaches and four tracking approaches. Our experiment results indicate that, by making full use of the low latency and sparse event stream, we could easily integrate an online tracking-by-clustering system running at a high frame rate, which far exceeds the real-time capabilities of traditional frame-based cameras. If the accuracy is prioritized, the tracking task can also be performed robustly at a relatively high rate with different combinations of algorithms. We also provide our dataset and evaluation approaches serving as the first neuromorphic benchmark in ITS and hopefully can motivate further research on neuromorphic vision sensors for ITS solutions.


2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


Author(s):  
S. Hoseini ◽  
G. Orchard ◽  
A. Yousefzadeh ◽  
B. Deverakonda ◽  
T. Serrano-Gotarredona ◽  
...  

Author(s):  
Marion Jude M. Gorospe

The school library is challenged to remain relevant in the 21st century learning environment. With young learners always consulting Google and other free search engines for subject assignment and other information needs and with the underwhelming quality of much web-based information, the school library must find an interesting and effective way to deliver authoritative and relevant information services through online tools. However, effective information services online are most often hosted from subscribed or paid Web 2.0 sites. These online services are capable of interactivity among learners and flexibility for individual schools’ administrative concerns. However, the ability to afford these services is frequently beyond the financial capability of schools from developing countries. The researcher explored the possibility of creating a school library website that serves as a pathfinder to online resources and electronically delivers other library-based school services using free Web 2.0 tools.


2021 ◽  
Author(s):  
Zhen Wang ◽  
Hui Zhang ◽  
Qiang Wang ◽  
Simone Borri ◽  
Iacopo Galli ◽  
...  

Abstract Gas sensors with high sensitivity, wide dynamic range, high selectivity, fast response, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, designing a compact gas sensor with ultra-high sensitivity and ultra-wide dynamic range remains a challenge. Laser-based photoacoustic spectroscopy (PAS) is a promising candidate to fill this gap. Herein, we report a novel method to simultaneously enhance the acoustic and light waves for PAS using integrated optical and acoustic resonators. This increases sensitivity by more than two orders of magnitude and extends the dynamic range by more than three orders of magnitude, compared with the state-of-the-art photoacoustic gas sensors. We demonstrate the concept by exploiting a near-infrared absorption line of acetylene (C2H2) at 1531.59 nm, achieving a detection limit of 0.5 parts-per-trillion (ppt), a noise equivalent absorption (NEA) of 5.7×10-13 cm-1 and a linear dynamic range of eight orders of magnitude. This study enables the realization of compact ultra-sensitive and ultra-wide-dynamic-range gas sensors in a number of different fields.


Author(s):  
Jia Li ◽  
Feng Shi ◽  
Weiheng Liu ◽  
Dongqing Zou ◽  
Qiang Wang ◽  
...  

2006 ◽  
Vol 07 (01) ◽  
pp. 63-73 ◽  
Author(s):  
WEIZHEN GU ◽  
D. FRANK HSU ◽  
XINGDE JIA

Live traffic flow information can help improve the efficiency of a communication network. There are many ways available to monitor the traffic flow of a network. In this paper, we propose a very efficient monitoring strategy. This strategy not only reduces the number of nodes to be monitored but also determines the complete traffic information of the entire network using the information from the monitored nodes. The strategy is optimal for monitoring a network because it reduces the number of monitored nodes to a minimum. Fast algorithms are also presented in this paper to compute the traffic information for the entire network based on the information collected from the monitored nodes. The monitoring scheme discussed in this paper can be applied to the internet, telecommunication networks, wireless ad hoc networks, large scale multiprocessor computing systems, and other information systems where the transmission of information needs to be monitored.


Fractals ◽  
2001 ◽  
Vol 09 (04) ◽  
pp. 471-479 ◽  
Author(s):  
N. W. WATKINS ◽  
M. P. FREEMAN ◽  
C. S. RHODES ◽  
G. ROWLANDS

The interaction between the Earth's magnetic field and the solar wind plasma results in a natural plasma confinement system which stores energy. Dissipation of this energy through Joule heating in the ionosphere can be studied via the Auroral Electrojet (AE) index. The apparent broken power law form of the frequency spectrum of this index has motivated investigation of whether it can be described as fractal coloured noise. One frequently-applied test for self-affinity is to demonstrate linear scaling of the logarithm of the structure function of a time series with the logarithm of the dilation factor λ. We point out that, while this is conclusive when applied to signals that are self-affine over many decades in λ, such as Brownian motion, the slope deviates from exact linearity and the conclusions become ambiguous when the test is used over shorter ranges of λ. We demonstrate that non self-affine time series made up of random pulses can show near-linear scaling over a finite dynamic range such that they could be misinterpreted as being self-affine. In particular, we show that pulses with functional forms such as those identified by Weimer within the AL index, from which AE is partly derived, will exhibit nearly linear scaling over ranges similar to those previously shown for AE and AL. The value of the slope, related to the Hurst exponent for a self-affine fractal, seems to be a more robust discriminator for fractality, if other information is available.


Sign in / Sign up

Export Citation Format

Share Document