scholarly journals Evaluation of Stress Generated with Different Abutment Materials and Angulations under Axial and Oblique Loading in the Anterior Maxilla: Three-Dimensional Finite Element Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sumedha Kapoor ◽  
Shobha Rodrigues ◽  
M. Mahesh ◽  
Thilak Shetty ◽  
Umesh Pai ◽  
...  

Purpose. The aim of this study was to assess and correlate the stress distribution in an anterior maxillary implant-supported prosthesis with 0°(degree), 15°, and 25° angulated titanium and zirconia abutments using a three-dimensional (3D) finite element analysis (FEA). Materials and Methods. Six FEA models consisting of a dentate anterior maxilla with a single bone-level implant of dimension 4.2 × 10 mm placed in the region of left maxillary central incisor and abutments of dimension 4.2 mm made of titanium and zirconia each with angulation 0° (IA and IB), 15° (IIA and IIB), and 25° (IIIA and IIIB) and ANSYS Workbench software were utilized to design a layered zirconia crown. Unilateral axial and oblique loads of 178 N were applied on the palatal aspect of the crown of left maxillary central incisor. Average von Mises stress values were evaluated in the implant and the peri-implant bone quantitatively and qualitatively. Results. Stress was shown to increase with an increase in angulation in all the areas that were examined. Zirconia abutments showed lesser stress in the implant and surrounding bone than titanium abutments. When compared with the body and apex of the implant, the implant neck values were higher in all models. In between cortical and cancellous bone, the stress recorded was higher in the cortical bone. Conclusion. Within the limitations of this study, straight abutments generated a more uniform and minimal stress in implant and peri-implant bone than angulated abutments. Titanium abutments generated higher stress levels than zirconia abutments. The stresses generated are directly proportional to an increase in abutment angulation, and therefore, straight abutments are most suitable for favourable stress transmission.

2020 ◽  
Vol 28 (6) ◽  
pp. 603-613 ◽  
Author(s):  
Efe Can Sivrikaya ◽  
Mehmet Sami Guler ◽  
Muhammed Latif Bekci

BACKGROUND: Zirconia has become a popular biomaterial in dental implant systems because of its biocompatible and aesthetic properties. However, this material is more fragile than titanium so its use is limited. OBJECTIVES: The aim of this study was to compare the stresses on morse taper implant systems under parafunctional loading in different abutment materials using three-dimensional finite element analysis (3D FEA). METHODS: Four different variations were modelled. The models were created according to abutment materials (zirconia or titanium) and loading (1000 MPa vertical or oblique on abutments). The placement of the implants (diameter, 5.0 × 15 mm) were mandibular right first molar. RESULTS: In zirconia abutment models, von Mises stress (VMS) values of implants and abutments were decreased. Maximum and minimum principal stresses and VMS values increased in oblique loading. VMS values were highest in the connection level of the conical abutments in all models. CONCLUSIONS: Using conical zirconia abutments decreases von Mises stress values in abutments and implants. However, these values may exceed the pathological limits in bruxism patients. Therefore, microfractures may be related to the level of the abutment.


2020 ◽  
Vol 899 ◽  
pp. 94-102
Author(s):  
Nur Faiqa Ismail ◽  
Muhammmad Aiman Firdaus Bin Adnan ◽  
Solehuddin Shuib ◽  
Nik Ahmad Hambali Nik Abd Rashid

External fixator has played an important role in repairing fractured ankle bone. This surgery is done due to the several factors which are the bone is not normal position or has broken into several pieces. The external fixator will help the broken bone to grow and remodel back to the original appearance. However, there are some issues regarding to the stability of this fixation. Improper design and material are the major factor that decreased the stability since it is related to the deformation of the external fixator to hold the bone fracture area. This study aims to design a stable structure for constructing delta frame ankle external fixator to increase the stability of the fixation. There are two designs of external fixator with two types of material used in this present study. Both external fixators with different materials are analyzed in terms of von Mises stress and deformation by using a conventional Finite Element Analysis software; ANSYS Workbench V15. The result obtained shows the Model 1 with stainless steel has less stress and deformation distributions compared to the Model 2. Hence, by using Model 1 as the external fixator, the stability of the fixation can be increased.


2020 ◽  
Vol 08 (01) ◽  
pp. 09-16
Author(s):  
Chhavi Sharma ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Anupreet Kaur Chawla

Abstract Introduction Dental implants are common treatment modality for tooth loss which leads to unaesthetic appearance and may also cause deterioration of mastication and speech. The aim of implant therapy in dentistry is to restore tissue contour, function, comfort, aesthetic, and speech. Dental implant role is to transfer the mechanical force created during chewing to the supporting osseous tissues within the mandible and maxilla. The importance of biomechanical factors such as the bone-implant interface, implant thread design, the length and diameter of implants, type of loading, the quality and quantity of surrounding bone have been strained by various authors. The selection of implant thread design plays an important role in the outcome of the treatment. This study was done to evaluate the influence of different thread designs on stress distribution of osseointegrated implant using three-dimensional (3D) finite-element analysis. Materials and Methods Three implants with different thread designs, namely V-thread, buttress, and reverse buttress thread designs were considered and dimensions were standardized. The site considered was the mandibular molar region with cortical and cancellous bone assuming to be isotropic and homogeneous. The implant modeling was done with the ANSYS 18.1 software. Axial load (100N) and buccolingual load (50N) were applied. The stresses were calculated as Von Mises stress criterion. Results Minimum von mises Stress concentration was seen for tapered implant body with reverse buttress thread design under axial load 100N and tapered implant body with V-thread under buccolingual load of 50N at cortical bone which signifies bone preservation. Stress levels were observed maximum at implant and minimum at the cancellous bone. Conclusion Hence, within the limitations of this study the results obtained can be applied clinically for appropriate selection of implant thread design for a predictable success of implant therapy.


2013 ◽  
Vol 6 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Neralla Mahathi ◽  
Emmanuel Azariah ◽  
C. Ravindran

Introduction The aim of the study was to propose an ideal plating design for fractures running through the mental foramen. Methods The study compared three plating designs—two four-hole miniplates, 2 × 2-hole three-dimensional (3D) plate, and modified 2 × 2-hole 3D plate (posterior strut removed)—using finite element analysis. Von Mises stresses generated around the plates and bone were measured, as well as the mobility that is generated between the fracture fragments by applying muscle forces to generate bite force in one test and applying a force of 500 N over the premolars and first molar region in the second test. Results Von Mises stress in bone with miniplates measured 9.24 MPa in test 1 and 131.99 MPa in test 2. The stress with unmodified 3D plates measured 34.9 MPa in test 1 and150.03 MPa in test 2. The stress with modified 3D plates measured 24.98 MPa in test 1 and 150.59 MPa in test 2. Von Mises stress on the plates and screws measured 28.23 MPa, 95.97 MPa, 72.93 MPa in test 1 and 458.63 MPa, 779.01 MPa, 742.39 MPa in test 2 on miniplates, unmodified 3D plates, and modified 3D plates, respectively. The fracture mobility generated in the model with miniplates measured 0.001 mm in test 1 and 0.01 mm in test 2 and 0.007 mm and 0.02 mm in the model with unmodified 3D plates in test 1 and in test 2, respectively. In the model with modified 3D plates, the value was 0.001 mm and 0.01 mm in tests 1 and 2, respectively. Conclusion The ideal plate design is the two-plate technique with minimal stress generation on the bone and the hardware. The modified 3D plate has adequate strength to be used in the region but needs to be studied in detail.


2020 ◽  
Vol 46 (1) ◽  
pp. 3-12
Author(s):  
Ji-Hyeon Oh ◽  
Young-Seong Kim ◽  
Joong Yeon Lim ◽  
Byung-Ho Choi

The all-on-4 concept, which is used to rehabilitate edentulous patients, can present with mechanical complications such as screw loosening and fracture. The purpose of this study was to evaluate the stress patterns induced in the prosthetic screws by the different prosthetic screw and abutment designs in the all-on-4 concept using finite element analysis. Von Mises stress values on 6 groups of each screw type, including short and narrow screw, short abutment; short and wide screw, short abutment; long and wide screw, short abutment; short and narrow screw, long abutment; short and wide screw, long abutment; and long and wide screw, long abutment, were compared under a cantilever loading of 200 N that was applied on the farther posterior to the position of the connection between the distal implant and the metal framework. Posterior prosthetic screws showed higher stress values than anterior prosthetic screws. The stress values in posterior prosthetic screws decreased as the length and diameter increased. In conclusion, the long and wide screw design offers advantages in stress distribution when compared with the short and narrow design.


2015 ◽  
Vol 41 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Gianpaolo Sannino

The aim of this work was to study the biomechanical behavior of an All-on-4 implant-supported prosthesis through a finite element analysis comparing 3 different tilt degrees of the distal implants. Three-dimensional finite element models of an edentulous maxilla restored with a prosthesis supported by 4 implants were reconstructed to carry out the analysis. Three distinct configurations, corresponding to 3 tilt degrees of the distal implants (15°, 30°, and 45°) were subjected to 4 loading simulations. The von Mises stresses generated around the implants were localized and quantified for comparison. Negligible differences in von Mises stress values were found in the comparison of the 15° and 30° models. From a stress-level viewpoint, the 45° model was revealed to be the most critical for peri-implant bone. In all the loading simulations, the maximum stress values were always found at the neck of the distal implants. The stress in the distal implants increased in the apical direction as the tilt degree increased. The stress location and distribution patterns were very similar among the evaluated models. The increase in the tilt degree of the distal implants was proportional to the increase in stress concentration. The 45° model induced higher stress values at the bone-implant interface, especially in the distal aspect, than the other 2 models analyzed.


Sign in / Sign up

Export Citation Format

Share Document