scholarly journals Shaking Table Tests on a New Antislide Pile under Earthquakes

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Lai ◽  
Yun Liu ◽  
Wei Wang

A retaining form of a shock-absorbing antislide pile is proposed for slope engineering. A flexible material (shock-absorption layer) is filled in front of an ordinary antislide pile, which is used to absorb a large amount of seismic energy, thereby decreasing the transmission of seismic energy to the antislide pile. The flexible material thus reduces the seismic response, hence improving the aseismic capacity of the antislide pile. To verify the seismic performance of the shock-absorbing antislide pile, a shaking table contrast test was conducted and the results were compared with those from an ordinary antislide pile. The test results show that the flexible material absorbs a portion of the seismic deformation of the slip mass, decreasing the final displacement of the shock-absorbing antislide pile compared to that of the ordinary antislide pile, thereby reducing the sensitivity of the pile body to the displacement. Under the same conditions, the acceleration response of the slope body at the same height is lower for the shock-absorbing antislide pile than that for the ordinary pile, with the seismic performance of the former being superior to that of the latter. Furthermore, the shock-absorbing antislide pile is similar to the ordinary pile in terms of the dynamic earth pressure distribution form of the pile shaft; however, its value is relatively smaller, and the former exhibits better dynamic stress performance than the latter. The test results should prove useful for aseismic design of slopes.

2012 ◽  
Vol 588-589 ◽  
pp. 1950-1954
Author(s):  
Hui Su ◽  
Guo Song Han ◽  
Xin Pei Jiang

In order to research the seismic property of masonry building constructed with the construction waste recycled bricks, a four stories building model with 1:3 scale is constructed and tested on the shaking table. Based on the test results, the cracks pattern, displacement response, acceleration response of the building are studied. The failure mechanism of the infill building is investigated. The results show that the construction waste recycled brick is a qualified building material to construct the low rise building.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lanfang Luo ◽  
Nan Jiang ◽  
Jihong Bi

This study investigated the real-time substructure shaking table testing (RTSSTT) of an equipment-structure-soil (ESS) system and the effects of soil on the seismic energy responses of the equipment-structure (ES) subsystem. First, the branch modal substructure approach was employed to derive the formulas needed for the RTSSTT of the ESS system. Then, individual equations for calculating the energy responses of the equipment and the structure were provided. The ES subsystem was adopted as the experimental substructure, whereas the reduced soil model was treated as the numerical substructure when the RTSSTT was performed on the ESS system. The effectiveness of the proposed testing method was demonstrated by comparing the test results with those of the integrated finite element analysis. The energy responses of the ES subsystem in the case of rigid ground (i.e., the ES system) were compared with those considering the effects of soil (i.e., the ESS system). The input energy responses of the ES subsystem were found to decrease significantly after taking the effects of soil into account. Differences due to the soil effects should be considered in the seismic design for the ES system.


2019 ◽  
Vol 23 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Jihong Bi ◽  
Lanfang Luo ◽  
Nan Jiang

Dynamic equations are presented that have been deduced for a real-time dynamic substructuring shaking table test of an equipment-structure system, based on the branch mode substructure method. The equipment is adopted as the experimental substructure, which is loaded by the shaking table, while the structure is adopted as the numerical substructure. Real-time data communication occurs between the two substructures during the test. A real-time seismic energy calculation method was proposed for the calculation of energy responses, both in the experimental substructure and the numerical substructure. Taking a representative four-story steel frame/equipment model, real-time dynamic substructuring shaking table tests and overall model tests were executed. The proposed real-time dynamic substructuring shaking table testing method was verified by comparing the test results with shaking table test results for the overall model. The energy responses of each component in the equipment-structure system, using different connection types, also were studied. Changes in the connection types can lead to changes in the energy responses of the equipment-structure system, especially with respect to the equipment. The choice of the connection for the equipment-structure coupled system should take into account the operational performance objective of the equipment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


2011 ◽  
Vol 27 (9) ◽  
pp. 87-98
Author(s):  
Jin-Tae Han ◽  
Jung-In Choi ◽  
Sung-Hwan Kim ◽  
Min-Taek Yoo ◽  
Myoung-Mo Kim

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tingting Wang ◽  
Jianhua Shao ◽  
Chao Zhao ◽  
Wenjin Liu ◽  
Zhanguang Wang

To investigate the seismic performance of buckling-restrained braces under the earthquake action, the shaking table test with a two-story 1/4 scale model is carried out for the ordinary pure steel frame and the buckling-restrained bracing steel frame with low-yield-point steel as the core plate. The failure modes, dynamic characteristics, acceleration response, interstory drift ratio, strain, shear force, and other mechanical properties of those two comparative structures subjected to different levels of seismic waves are mainly evaluated by the experiment. The test results show that under the action of seismic waves with different intensities, the apparent observations of damage occur in the pure frame structure, while no obvious or serious damage in the steel members of BRB structure is observed. With the increase in loading peak acceleration for the earthquake waves, the natural frequency of both structures gradually decreases and the damping ratio gradually increases. At the end of the test, the stiffness degradation rate of the pure frame structure is 11.2%, while that of the buckling-restrained bracing steel frame structure is only 5.4%. The acceleration response of the buckling-restrained bracing steel frame is smaller than that of the pure steel frame, and the acceleration amplification factor at the second story is larger than that at the first story for both structures. The average interstory drift ratios are, respectively, 1/847 and 1/238 for the pure steel frame under the frequent earthquake and rare earthquake and are 1/3000 and 1/314 for the buckling-restrained bracing steel frame, which reveals that the reduction rate of lateral displacement reaches a maximum of 71.71% after the installation of buckling-restrained brace in the pure steel frame. The strain values at each measuring point of the structural beam and column gradually increase with the increase of the peak seismic acceleration, but the strain values of the pure steel frame are significantly larger than those of the buckling-restrained bracing steel frame, which indicates that the buckling-restrained brace as the first seismic line of defense in the structure can dramatically protect the significant structural members. The maximum shear force at each floor of the structure decreases with the increase in height, and the shear response of the pure frame is apparently higher than that of the buckling-restrained bracing structure.


2021 ◽  
Author(s):  
Shengcai Li ◽  
Shengxiang Shi ◽  
Zhongchen Zhou

In order to evaluate the influence of internal defects of semi-grouting sleeve connection on seismic performance of assembled monolithic columns, four specimens of assembled monolithic concrete column with semi grouting sleeve connecting reinforcement bar were fabricated with 10%, 20%, 30% internal defects. The test results show that (1) the assembled columns are all damaged by bending, the grouting layer of the assembled column can be pulled apart easily and the cracks develop more closely on the upper part of the sleeve; (2) the larger the internal defects in the sleeve, the less the cracks on the column, and the less sufficient the cracks development; (3) the seismic energy dissipation capacity of the column without defect is better than that of the defective columns.


2021 ◽  
pp. 136943322199329
Author(s):  
Zhiyi Chen ◽  
Pengfei Huang ◽  
Wei Chen

A series of shaking table tests were carried out to investigate the seismic response characteristics of a multi-story subway station. Dynamic responses, including accelerations of the soils and the underground structure, layer drift, dynamic earth pressure, and lateral deformation of soils were recorded and analyzed. Several seismic characteristics of multi-story subway station structures are figured out. It is found that in addition to the racking deformation, the rotation vibration is observed for the multi-story subway station subjected to acceleration waves. From the viewpoint of frequency, the low-frequency component and high-frequency component of the acceleration response of the subway station represent the translation and rotation component of the multi-story subway structure, respectively. In addition, the rotation vibration of the deep-depth structure leads to the local squeezing and detachment from the surrounding soils alternately at both top and bottom ends of the sidewalls. This results in the hump-shaped distribution of dynamic earth pressure. The racking deformation of the multi-story subway station has a linear relationship with the dynamic earth pressure at a certain area along the sidewall, where the top of hump-shaped distribution of dynamic earth pressure is.


Sign in / Sign up

Export Citation Format

Share Document