scholarly journals Research on AR-AKF Model Denoising of the EMG Signal

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sijia Chen ◽  
Zhizeng Luo ◽  
Tong Hua

Electromyography (EMG) signals can be used for clinical diagnosis and biomedical applications. It is very important to reduce noise and to acquire accurate signals for the usage of the EMG signals in biomedical engineering. Since EMG signal noise has the time-varying and random characteristics, the present study proposes an adaptive Kalman filter (AKF) denoising method based on an autoregressive (AR) model. The AR model is built by applying the EMG signal, and the relevant parameters are integrated to find the state space model required to optimally estimate AKF, eliminate the noise in the EMG signal, and restore the damaged EMG signal. To be specific, AR autoregressive dynamic modeling and repair for distorted signals are affected by noise, and AKF adaptively can filter time-varying noise. The denoising method based on the self-learning mechanism of AKF exhibits certain capabilities to achieve signal tracking and adaptive filtering. It is capable of adaptively regulating the model parameters in the absence of any prior statistical knowledge regarding the signal and noise, which is aimed at achieving a stable denoising effect. By comparatively analyzing the denoising effects exerted by different methods, the EMG signal denoising method based on the AR-AKF model is demonstrated to exhibit obvious advantages.

2006 ◽  
Vol 128 (5) ◽  
pp. 666-671 ◽  
Author(s):  
Z. S. Chen ◽  
Y. M. Yang ◽  
Z. Hu ◽  
G. J. Shen

Vibration signals of complex rotating machinery are often cyclostationary, so in this paper one novel method is proposed to detect and predict early faults based on the linear (almost) periodically time-varying autoregressive (LPTV-AR) model. At first the algorithms of identifying model parameters and order are presented using the higher-order cyclic-cumulant, which can suppress additive stationary noises and improve the signal to noise ratio (SNR). Then numerical simulations are done and the results indicate that this model is more effective for cyclostationary signals than the classical AR model. In the end the proposed method is used for detecting incipient gear crack fault in a helicopter gearbox. The results demonstrate that the approach can be used to detect and predict early faults of complex rotating machinery by the kurtosis of the residual signal.


2021 ◽  
pp. 15-27
Author(s):  
İlker Met ◽  
Levent Özbek ◽  
Himmet Aksoy ◽  
Ayfer Erkoç

Abstract Since the beginning of 2020, the world has been struggling with a viral epidemic (COVID-19), which poses a serious threat to the collective health of the human race. Mathematical modeling of epidemics is critical for developing such policies, especially during these uncertain times. In this study, the reproduction number and model parameters were predicted using AR(1) (autoregressive time-series model of order 1) and the adaptive Kalman filter (AKF). The data sample used in the study consists of the weekly and daily number of cases amongst the Ziraat Bank personnel between March 11, 2020, and April 19, 2021. This sample was modeled in the state space, and the AKF was used to estimate the number of cases per day. It is quite simple to model the daily and weekly case number time series with the time-varying parameter AR(1) stochastic process and to estimate the time-varying parameter with online AKF. Overall, we found that the weekly case number prediction was more accurate than the daily case number (R2 = 0.97), especially in regions with a low number of cases. We suggest that the simplest method for reproduction number estimation can be obtained by modeling the daily cases using an AR(1) model. JEL classification numbers: C02, C22, C32. Keywords: COVID-19, Modeling, Reproduction number estimation, AR(1), Kalman filter.


Author(s):  
O. P. Tomchina ◽  
D. N. Polyakhov ◽  
O. I. Tokareva ◽  
A. L. Fradkov

Introduction: The motion of many real world systems is described by essentially non-linear and non-stationary models. A number of approaches to the control of such plants are based on constructing an internal model of non-stationarity. However, the non-stationarity model parameters can vary widely, leading to more errors. It is only assumed in this paper that the change rate of the object parameters is limited, while the initial uncertainty can be quite large.Purpose: Analysis of adaptive control algorithms for non-linear and time-varying systems with an explicit reference model, synthesized by the speed gradient method.Results: An estimate was obtained for the maximum deviation of a closed-loop system solution from the reference model solution. It is shown that with sufficiently slow changes in the parameters and a small initial uncertainty, the limit error in the system can be made arbitrarily small. Systems designed by the direct approach and systems based on the identification approach are both considered. The procedures for the synthesis of an adaptive regulator and analysis of the synthesized system are illustrated by an example.Practical relevance: The obtained results allow us to build and analyze a broad class of adaptive systems with reference models under non-stationary conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
C. F. Lo

The Lie-algebraic approach has been applied to solve the bond pricing problem in single-factor interest rate models. Four of the popular single-factor models, namely, the Vasicek model, Cox-Ingersoll-Ross model, double square-root model, and Ahn-Gao model, are investigated. By exploiting the dynamical symmetry of their bond pricing equations, analytical closed-form pricing formulae can be derived in a straightfoward manner. Time-varying model parameters could also be incorporated into the derivation of the bond price formulae, and this has the added advantage of allowing yield curves to be fitted. Furthermore, the Lie-algebraic approach can be easily extended to formulate new analytically tractable single-factor interest rate models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Serdar Neslihanoglu

AbstractThis research investigates the appropriateness of the linear specification of the market model for modeling and forecasting the cryptocurrency prices during the pre-COVID-19 and COVID-19 periods. Two extensions are offered to compare the performance of the linear specification of the market model (LMM), which allows for the measurement of the cryptocurrency price beta risk. The first is the generalized additive model, which permits flexibility in the rigid shape of the linearity of the LMM. The second is the time-varying linearity specification of the LMM (Tv-LMM), which is based on the state space model form via the Kalman filter, allowing for the measurement of the time-varying beta risk of the cryptocurrency price. The analysis is performed using daily data from both time periods on the top 10 cryptocurrencies by adjusted market capitalization, using the Crypto Currency Index 30 (CCI30) as a market proxy and 1-day and 7-day forward predictions. Such a comparison of cryptocurrency prices has yet to be undertaken in the literature. The empirical findings favor the Tv-LMM, which outperforms the others in terms of modeling and forecasting performance. This result suggests that the relationship between each cryptocurrency price and the CCI30 index should be locally instead of globally linear, especially during the COVID-19 period.


2014 ◽  
Vol 668-669 ◽  
pp. 352-356 ◽  
Author(s):  
Zhi Hu Ruan ◽  
Niu Wang ◽  
Bing Xin Ran

Based on kinematics characteristic of two-wheeled differential drive mobile robot (WMR) and response characteristic of fact motor drive system, this paper presents the analysis method of the equivalent rotation inertia, and the entire vehicle load is assigned to each wheel, and then the wheel load is converted into the corresponding equivalent rotation inertia of the motor shaft of each wheel, and motion model of WMR are obtained for combining with quasi-equivalent (QE) state space model of double-loop direct current motor systems under variable load and kinematics model of WMR under the load changes. By using speed response data of the actual system and combining with genetic algorithm to accurately identify the model parameters. Finally, through experiments results of the WMR motion model and the second order model respectively comparing with the actual system which demonstrates the effectiveness of the proposing method and model.


Author(s):  
Arnaud Dufays ◽  
Elysee Aristide Houndetoungan ◽  
Alain Coën

Abstract Change-point (CP) processes are one flexible approach to model long time series. We propose a method to uncover which model parameters truly vary when a CP is detected. Given a set of breakpoints, we use a penalized likelihood approach to select the best set of parameters that changes over time and we prove that the penalty function leads to a consistent selection of the true model. Estimation is carried out via the deterministic annealing expectation-maximization algorithm. Our method accounts for model selection uncertainty and associates a probability to all the possible time-varying parameter specifications. Monte Carlo simulations highlight that the method works well for many time series models including heteroskedastic processes. For a sample of fourteen hedge fund (HF) strategies, using an asset-based style pricing model, we shed light on the promising ability of our method to detect the time-varying dynamics of risk exposures as well as to forecast HF returns.


2021 ◽  
Vol 22 (8) ◽  
pp. 404-410
Author(s):  
K. B. Dang ◽  
A. A. Pyrkin ◽  
A. A. Bobtsov ◽  
A. A. Vedyakov ◽  
S. I. Nizovtsev

The article deals with the problem of state observer design for a linear time-varying plant. To solve this problem, a number of realistic assumptions are considered, assuming that the model parameters are polynomial functions of time with unknown coefficients. The problem of observer design is solved in the class of identification approaches, which provide transformation of the original mathematical model of the plant to a static linear regression equation, in which, instead of unknown constant parameters, there are state variables of generators that model non-stationary parameters. To recover the unknown functions of the regression model, we use the recently well-established method of dynamic regressor extension and mixing (DREM), which allows to obtain monotone estimates, as well as to accelerate the convergence of estimates to the true values. Despite the fact that the article deals with the problem of state observer design, it is worth noting the possibility of using the proposed approach to solve an independent and actual estimation problem of unknown time-varying parameters.


1982 ◽  
Vol 72 (2) ◽  
pp. 615-636
Author(s):  
Robert F. Nau ◽  
Robert M. Oliver ◽  
Karl S. Pister

Abstract This paper describes models used to simulate earthquake accelerograms and analyses of these artificial accelerogram records for use in structural response studies. The artificial accelerogram records are generated by a class of linear linear difference equations which have been previously identified as suitable for describing ground motions. The major contributions of the paper are the use of Kalman filters for estimating time-varying model parameters, and the development of an effective nonparametric method for estimating the variance envelopes of the accelerogram records.


Sign in / Sign up

Export Citation Format

Share Document