scholarly journals Investigation of Pharmacokinetic Parameters of Trelagliptin in Egyptian Volunteers Using Sensitive LC-MS/MS: A Comparative Study with a Japanese Population

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shereen Mowaka ◽  
Nermeen Ashoush ◽  
Mariam M. Tadros ◽  
Bassam M. Ayoub

Trelagliptin (TLN) is a novel once-weekly antidiabetic drug that enhanced the patient compliance in type 2 diabetes. TLN analysis and bioanalysis literature review showed many methods for TLN assay either in dosage form or as biological fluids (pharmacokinetic parameters), but all those methods did not consider the full details dealing with biological assay of TLN. Studies that included information about pharmacokinetic parameters did not mention the used analytical procedures for those determinations and parameters. Although some LC-MS/MS and UPLC-UV methods were reported for TLN bioassay in rats’ plasma, they used direct precipitation techniques, and the current described procedure showed lower LLOQ than all the reported methods in spite of that working on human plasma is more complicated than on rats’ plasma. In this study, LC-MS/MS bioanalysis of TLN in human plasma (4–1000 nM) was employed successfully with LLOQ of 4 nM which is lower than all reported methods in rats’ plasma followed by a preliminary pharmacokinetic study. Alogliptin was used as internal standard (IS) because of its structure similarity to TLN. Pharmacokinetic parameters of TLN were investigated in Egyptian volunteers, and they had been compared to Japanese. Liquid-liquid extraction showed more sensitive results than direct precipitation. The proposed method was successfully applied to a pharmacokinetic study conducted on Egyptian volunteers. No dose modification is required upon comparing the pharmacokinetic parameters of the current study and previous studies on non-Egyptian volunteers.

2012 ◽  
Vol 9 (2) ◽  
pp. 899-911 ◽  
Author(s):  
D. Chandrapal Reddy ◽  
A. T. Bapuji ◽  
V. Surayanarayana Rao ◽  
V. Himabindu ◽  
D. Rama Raju ◽  
...  

A selective, high sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) method has been developed and validated for the chromatographic separation and quantitation of duloxetine in human EDTA plasma using fluoxetine (IS) as an internal standard. Analyte and IS were extracted from human plasma by liquid-liquid extraction using MTBE-n Hexane (80:20).The eluted samples were chromatographed on X-terra RP8 (50 mmx4.6 mm, 5 μm particle size) column by using mixture of 30 mM ammonium formate (pH-5.0±0.05) and acetonitrile as an isocratic mobile phase at a flow rate of 0.40 mL/min and analyzed by mass spectrometer in the multiple reaction monitoring (MRM) using the respective m/z 298.08→154.0 for duloxetine and 310.02→148.07 for IS. The linearity of the response/ concentration curve was established in human plasma over the concentration range 0.100-100.017 ng/mL. The lower detection limit (LOD,S/N>3) was 0.04 ng/mL and the lower limit of quantization (LOQ,S/N>10) was 0.100 ng/mL. This LC-MS/MS method was validated with Intra-batch and Inter-batch precision of 5.21-7.02. The Intra-batch and Inter-batch accuracy was 97.14-103.50 respectively. Recovery of duloxetine in human plasma is 80.31% and ISTD recovery is 81.09%. The main pharmacokinetic parameters were Tmax(hr) = (7.25±1.581), Cmax(ng/mL) (44.594±18.599), AUC0→t, = (984.702±526.502) and AUC0→∞, (1027.147±572.790) respectively.


Author(s):  
Satish Ramanatham Velamakanni ◽  
Venkateswarlu Padala

Objective: The aspiration of the present study was to develop simple, robust and reliable liquid chromatography/electro spray ionization tandem mass spectrometry (LC-MS/MS) (Agilent Technologies) assay method for the quantification of etonogestrel in human serum by using etonogestrel d6 as internal standard (IS).Methods: An easy Liquid-Liquid Extraction (LLE) sample processing method was used to extract etonogestrel from plasma and chromatographic method was developed with run time 3.5min with linear calibration curve ranges from 50-3604 pg/mL for both etonogestrel and etonogestrel d6 and chromatographic method validated by determining carryover test, sensitivity, matrix effect, linearity, precision, accuracy, recovery, dilution integrity and stability. The developed method was used for pharmacokinetic study of 75mcg desogestrel tablet formulation under fasting condition in healthy females.Results: The validation showed the developed method was accurate with the results of validated parameters were met acceptance criteria as per Food and Drug Administration (FDA) guidelines. The validated method successfully was used for pharmacokinetic study of 75mcg desogestrel tablet in healthy females and quantified the amount of etonogestrel and IS.Conclusion: The developed method for etonogestrel in human plasma has been validated and used in pharmacokinetic studies. 


2014 ◽  
Vol 97 (4) ◽  
pp. 1061-1066 ◽  
Author(s):  
Bilal Yilmaz ◽  
Huseyin Sahin ◽  
Vedat Akba ◽  
Ali Fuat Erdem

Abstract This paper describes a GC/MS method for the determination of flurbiprofen in human plasma. Flurbiprofen and internal standard ibuprofen were extracted from plasma by using a liquid–liquid extraction method. Derivatization was carried out using N-Methyl-N-(trimethylsilyl)trifluoroacetamide. The calibration curve was linear between the concentration range of 0.10 and 5.0 μg/mL. Intraday and interday precision values for flurbiprofen in plasma were less than 5.49%, and accuracy (relative error) was better than 5.33%. The extraction recoveries of flurbiprofen from human plasma were between 93.6 and 98.6%. The LOD and LOQ of flurbiprofen were 0.03 and 0.10 μg/mL, respectively. This assay was applied to determine the pharmacokinetic parameters of flurbiprofen in healthy Turkish volunteers who had been given 100 mg of flurbiprofen.


Author(s):  
Aruna G. ◽  
Bharathi K ◽  
Kvsrg Prasad

Objective: To develop and validate a modified isocratic reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of cilnidipine and nebivolol in human plasma to be used for pharmacokinetic studies.Methods: The drug was extracted from plasma samples by direct protein precipitation technique using acetonitrile. Amlodipine was used as internal standard (IS). Samples were analyzed on BDS C18 column (250 x 4.6 mm, 5 µm), applying ortho phosphoric acid (0.1%): Acetonitrile, at a ratio of 45:55 v/v in isocratic mode as a mobile phase at a flow rate of 1 ml/min to attain adequate resolution. Separations were performed at room temperature and monitored at a wavelength of 260 nm after injection of 50μl samples into the HPLC system. The analytical method was validated according to FDA bioanalytical method validation guidance. The method was applied for pharmacokinetic study of cilnidipine and nebivolol tablets-10 mg and 5 mg were administered as a single dose to 6 healthy male rabbits under fasting condition. Twelve blood samples were withdrawn from each rabbit over 24 h periods. From the plasma concentration-time data of each individual, the pharmacokinetic parameters; Cmax, Tmax, AUC0-t and AUC0-∞ were calculated.Results: A peak area was obtained for cilnidipine and nebivolol at 3.943 and 4.719 min retention time respectively. Linearity was established at a concentration range of 0.20-20 μg/ml (r2=0.999, n=8) for cilnidipine and 0.02-2 μg/ml (r2=0.999, n=8) for nebivolol. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 0.2μg/ml for cilnidipine and 0.02 μg/ml for nebivolol. The coefficients of variation (%cv) of the intra-day and inter-day precision of cilnidipine at 600, 1000 and 1600ng/ml levels were found to be 6.90%, 6.19%, 5.22%; and 7.74%, 6.54%, 5.77%, respectively, which are lower than the accepted criteria limits (15-20 %). The mean recovery (%) cilnidipine at 600, 1000, and 1600ng/ml was found to be 101.03%, 99.27% and 104.87%, and for nebivolol 60, 100, and 160 ng/ml was found to be 106.13%, 107.03% and 98.06% respectively. Stability at different conditions and in autosampler was also established. The mean pharmacokinetic parameters; Cmax, Tmax, AUC0-t and AUC0-∞ were 6 ng/ml, 2 hr, 96.76 mg. hr/ml, 63.45 mg. hr/ml for cilnidipine and 5.8ng/ml, 2hr, 74.78 mg. hr/ml, 100.25 mg. hr/ml for nebivolol respectively.Conclusion: The present analytical method was found to be specific, sensitive, accurate and precise for quantification of cilnidipine and nebivolol in human plasma. It can be successively applied for pharmacokinetics, bioavailability and bioequivalence studies.


2018 ◽  
Vol 25 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Sireesha Dodda ◽  
Ajitha Makula ◽  
Srinivasa R Polagani ◽  
Raj N Kandhagatla

A method for bioanalysis of pentoxifylline in human plasma was developed using liquid chromatography–tandem mass spectrometry, which is simple, specific, and sensitive. Pentoxifylline D5 was used as the internal standard. Employing only 100 µl of human plasma, processing was done with solid-phase extraction technique. The analyte and the internal standard were separated from endogenous components on Ace phenyl column using a mixture of 5 mM ammonium acetate buffer and high performance liquid chromatography grade acetonitrile (60:40, v/v) as mobile phase at a flow rate of 1 ml/min. The linearity of the method was in the range of 3–1200 ng/ml with r2 > 0.99. Positive ion MRM mode was used for the detection of the analyte and the internal standard. The method was validated as per the US Food and Drug Administration guidelines and the results were within the acceptance limits. The proposed method was applied for comparative pharmacokinetic study of pentoxifylline after oral administration of 400 and 600 mg tablets to South Indian male subjects under fed conditions.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5799
Author(s):  
Olga Maliszewska ◽  
Natalia Treder ◽  
IIona Olędzka ◽  
Piotr Kowalski ◽  
Natalia Miękus ◽  
...  

A new approach for the sensitive, robust and rapid determination of idarubicin (IDA) in human plasma and urine samples based on liquid chromatography with fluorescence detection (LC-FL) was developed. Satisfactory chromatographic separation of the analyte after solid-phase extraction (SPE) was performed on a Discovery HS C18 analytical column using a mixture of acetonitrile and 0.1% formic acid in water as the mobile phase in isocratic mode. IDA and daunorubicin hydrochloride used as an internal standard (I.S.) were monitored at the excitation and emission wavelengths of 487 and 547 nm, respectively. The method was validated according to the FDA and ICH guidelines. The linearity was confirmed in the range of 0.1–50 ng/mL and 0.25–200 ng/mL, while the limit of detection (LOD) was 0.05 and 0.125 ng/mL in plasma and urine samples, respectively. The developed LC-FL method was successfully applied for drug determinations in human plasma and urine after oral administration of IDA at a dose of 10 mg to a patient with highly advanced alveolar rhabdomyosarcoma (RMA). Moreover, the potential exposure to IDA present in both fluids for healthcare workers and the caregivers of patients has been evaluated. The present LC-FL method can be a useful tool in pharmacokinetic and clinical investigations, in the monitoring of chemotherapy containing IDA, as well as for sensitive and reliable IDA quantitation in biological fluids.


2014 ◽  
Vol 97 (2) ◽  
pp. 415-420 ◽  
Author(s):  
Bilal Yilmaz ◽  
Ali Fuat Erdem

Abstract This paper describes a GC/MS method for the determination of ibuprofen in human plasma and urine. Ibuprofen and internal standard naproxen were extractedfrom plasma and urine by using a liquid–liquid extraction method. Derivatization was carried outusing N-methyl-N-(trimethylsilyl) trifluoroacetamide. Calibration curves were linear over the concentration range of 0.05–5.0 and 0.1–10.0 μg/mL for plasma and urine, respectively. Intraday and interday precision (RSD) values for ibuprofen in plasma and urine were less than 6.31%, and accuracy (relative error) was better than 12.00%. The mean recovery of ibuprofen was 89.53% for plasma and 93.73% for urine. TheLOD was 0.015 and 0.03 μg/mL and the LOQ was 0.05 and 0.1 μg/mL for plasma and urine, respectively. The method was successfully applied to blood samples from three healthy male volunteers who had been given an oral tablet of 600 mg ibuprofen.


2011 ◽  
Vol 8 (4) ◽  
pp. 1802-1814 ◽  
Author(s):  
S. Ravinder ◽  
A. T. Bapuji ◽  
K. Mukkanti ◽  
M. Nagesh ◽  
H. L. V. Ravikiran

A rapid, robust and selective high pressure liquid chromatography–positive electrospray ionization tandem mass spectrometry method has been developed and validated for the quantification of quetiapine (QUE) in human plasma with K2EDTA using oxcarbazepine (IS) as an internal standard. Analyte and internal standard were extracted from human plasma by solid-phase extraction using acetonitrile. The eluted samples were chromatographed on a C18 column by using a 10:75:15v/v mixture of ammonium formate buffer (5 mM, pH 4.50) and acetonitrile and methanol as an isocratic mobile phase at a flow rate of 0.4 mL/min and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ions,m/z384.3/253.2 for Quetiapine andm/z253.1/208.1 for the internal standard. The assay exhibited a linear dynamic range of 5.01 - 2501.04 ng/mL for quetiapine in human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze 300 patient plasma samples per day. The validated method has been successfully used for the estimation of quetiapine in real time schizophrenia patient’s plasma samples for pharmacokinetic study.


Sign in / Sign up

Export Citation Format

Share Document