scholarly journals Reliable Reputation Review and Secure Energy Transaction of Microgrid Community Based on Hybrid Blockchain

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zilong Song ◽  
Xiaohong Zhang ◽  
Miaomiao Liang

A growing number of prosumers have entered the local power market in response to an increase in the number of residential users who can afford to install distributed energy resources. The traditional microgrid trading platform has many problems, such as low transaction efficiency, the high cost of market maintenance, opaque transactions, and the difficulty of ensuring user privacy, which are not conducive to encouraging users to participate in local electricity trading. A blockchain-based mechanism of microgrid transactions can solve these problems, but the common single-blockchain framework cannot manage user identity. This study thus proposes a mechanism for secure microgrid transactions based on the hybrid blockchain. A hybrid framework consisting of private blockchain and consortium blockchain is first proposed to complete market transactions. The private blockchain stores the identifying information of users and a review of their transactions, while the consortium blockchain is responsible for storing transaction information. The block digest of the private blockchain is stored in the consortium blockchain to prevent information on the private blockchain from being tampered with by the central node. A reputation evaluation algorithm based on user behavior is then developed to evaluate user reputation, which affects the results of the access audit on the private blockchain. The higher a user’s reputation score is, the more benefits he/she can obtain in the transaction process. Finally, an identity-based proxy signcryption algorithm is proposed to help the intelligent management device with limited computing power obtain signcryption information in the transaction process to protect the transaction information. A system analysis showed that the secure transaction mechanism of the microgrid based on the hybrid blockchain boasts many security features, such as privacy, transparency, and imtamperability. The proposed reputation evaluation algorithm can objectively reflect all users’ behaviors through their reputation scores, and the identity-based proxy signcryption algorithm is practical.

2020 ◽  
Author(s):  
Imdad Ullah

Online mobile advertising ecosystems provide advertising and analytics services that collect, aggregate, process and trade rich amount of consumer's personal data and carries out interests-based ads targeting, which raised serious privacy risks and growing trends of users feeling uncomfortable while using internet services. In this paper, we address user's privacy concerns by developing an optimal dynamic optimisation cost-effective framework for preserving user privacy for profiling, ads-based inferencing, temporal apps usage behavioral patterns and interest-based ads targeting. A major challenge in solving this dynamic model is the lack of knowledge of time-varying updates during profiling process. We formulate a mixed-integer optimisation problem and develop an equivalent problem to show that proposed algorithm does not require knowledge of time-varying updates in user behavior. Following, we develop an online control algorithm to solve equivalent problem using Lyapunov optimisation and to overcome difficulty of solving nonlinear programming by decomposing it into various cases and achieve trade-off between user privacy, cost and targeted ads. We carry out extensive experimentations and demonstrate proposed framework's applicability by implementing its critical components using POC `System App'. We compare proposed framework with other privacy protecting approaches and investigate that it achieves better privacy and functionality for various performance parameters.<br>


2020 ◽  
Author(s):  
Imdad Ullah

Online mobile advertising ecosystems provide advertising and analytics services that collect, aggregate, process and trade rich amount of consumer's personal data and carries out interests-based ads targeting, which raised serious privacy risks and growing trends of users feeling uncomfortable while using internet services. In this paper, we address user's privacy concerns by developing an optimal dynamic optimisation cost-effective framework for preserving user privacy for profiling, ads-based inferencing, temporal apps usage behavioral patterns and interest-based ads targeting. A major challenge in solving this dynamic model is the lack of knowledge of time-varying updates during profiling process. We formulate a mixed-integer optimisation problem and develop an equivalent problem to show that proposed algorithm does not require knowledge of time-varying updates in user behavior. Following, we develop an online control algorithm to solve equivalent problem using Lyapunov optimisation and to overcome difficulty of solving nonlinear programming by decomposing it into various cases and achieve trade-off between user privacy, cost and targeted ads. We carry out extensive experimentations and demonstrate proposed framework's applicability by implementing its critical components using POC `System App'. We compare proposed framework with other privacy protecting approaches and investigate that it achieves better privacy and functionality for various performance parameters.<br>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Dawei Jiang ◽  
Guoquan Shi

With the close integration of science and technology and health, the broad application prospects of healthy interconnection bring revolutionary changes to health services. Health and medical wearable devices can collect real-time data related to user health, such as user behavior, mood, and sleep, which have great commercial and social value. Healthcare wearable devices, as important network nodes for health interconnection, connect patients and hospitals with the Internet of Things and sensing technology to form a huge medical network. As wearable devices can also collect user data regardless of time and place, uploading data to the cloud can easily make the wearable device’s system vulnerable to attacks and data leakage. Defects in technology can sometimes cause problems such as lack of control over data flow links in wearable devices, and data and privacy leaks are more likely to occur. In this regard, how to ensure the data security and user privacy while using healthcare wearable devices to collect data is a problem worth studying. This article investigates data from healthcare wearable devices, from technical, management, and legal aspects, and studies data security and privacy protection issues for healthcare wearable devices to protect data security and user privacy and promote the sustainable development of the healthcare wearable device industry and the scientific use of data collection.


2020 ◽  
Author(s):  
Alex Akinbi ◽  
Mark Forshaw ◽  
Victoria Blinkhorn

The COVID-19 pandemic has spread with increased fatalities around the world and has become an international public health crisis. Public health authorities in many countries have introduced contact tracing apps to track and trace infected persons as part of measures to contain the spread of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). However, there are major concerns about its efficacy and privacy with affects mass acceptance amongst a population. This review encompasses the current challenges facing this technology in the fight against the COVID-19 pandemic in neo-liberal societies. We explore and discuss the plausibility for abuse of user privacy rights as such apps collect private user data and can be repurposed by governments for surveillance on their citizens. Other challenges identified and discussed include ethical issues, security vulnerabilities, user behavior and participation, and technical constraints. Finally, in the analysis of this review, recommendations to address these challenges and considerations in the use of less invasive digital contact tracing technologies for future pandemics are presented. For policy makers in neo-liberal societies, this study provides an in-depth review of issues that must be addressed, highlights recommendations to improve the efficacy of such apps, and could facilitate mass acceptance amongst users.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Lifa Wu ◽  
Shengli Zhou ◽  
Zhenji Zhou ◽  
Zheng Hong ◽  
Kangyu Huang

In the field of cloud computing, most research on identity management has concentrated on protecting user data. However, users typically leave a trail when they access cloud services, and the resulting user traceability can potentially lead to the leakage of sensitive user information. Meanwhile, malicious users can do harm to cloud providers through the use of pseudonyms. To solve these problems, we introduce a reputation mechanism and design a reputation-based identity management model for cloud computing. In the model, pseudonyms are generated based on a reputation signature so as to guarantee the untraceability of pseudonyms, and a mechanism that calculates user reputation is proposed, which helps cloud service providers to identify malicious users. Analysis verifies that the model can ensure that users access cloud services anonymously and that cloud providers assess the credibility of users effectively without violating user privacy.


Author(s):  
Christos Kalloniatis ◽  
Evangelia Kavakli ◽  
Stefanos Gritzalis

A major challenge in the field of software engineering is to make users trust the software that they use in their everyday activities for professional or recreational reasons. Trusting software depends on various elements, one of which is the protection of user privacy. Protecting privacy is about complying with user’s desires when it comes to handling personal information. Users’ privacy can also be defined as the right to determine when, how and to what extend information about them is communicated to others. Current research stresses the need for addressing privacy issues during the system design rather than during the system implementation phase. The aim of this chapter is to elevate the modern practices for ensuring privacy during the software systems’ design phase. Through the presentation of the modern methods, the basic privacy requirements that should be considered during system analysis are introduced. Additionally, a number of well known methods that have been introduced in the research area of requirements engineering which aim on eliciting and analyzing privacy requirements during system design are introduced and analyzed. Finally, a comparative analysis between these methods is presented.


Sign in / Sign up

Export Citation Format

Share Document