scholarly journals Hysteretic Behavior of Specimens of Circular Concrete-Filled CFRP-Steel Tubular Beam-Column

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wang Qing-li ◽  
Yu LingFeng ◽  
Peng Kuan

To study the difference in hysteretic behavior of specimens of circular concrete-filled CFRP-steel tube under different influencing factors, 12 specimens were designed, and their failure modes and P-Δ curves were studied. ABAQUS was used to simulate the specimens’ P-Δ curves and deformation mode. Based upon the simulation results, the stress distribution of all of the specimens’ component materials and the interaction between the steel tube and concrete was analyzed throughout the entire loading process, and the trilinear model, the restoring force model of circular concrete-filled CFRP-steel tube, was proposed. All of the specimens’ P-Δ curves were full and demonstrated excellent hysteretic behavior. The specimens’ P-Δ curves, the skeleton curves, and deformation mode were simulated by the ABAQUS, and the simulation results agreed well with the experimental results. Further, the results of the restoring force model built based upon the trilinear model agreed well with the finite element simulation results.

2005 ◽  
Vol 11 (9) ◽  
pp. 1147-1158 ◽  
Author(s):  
G. Michon ◽  
L. Manin ◽  
R. Dufour

In this paper we describe the modeling of the hysteretic behavior of belt tensioners. An initial experimental device is composed only of the tensioner by using forcing frequencies, preloads and deflection amplitudes. It permits the identification of the parameters of the restoring force model used. Comparison of the measured and predicted force-deflection loops of the tensioner subjected to large deflections permits preliminary validation of the model. The second experimental device consists of a belt-tensioner system. Its non-linear modeling includes the above hysteretic model and the belt’s longitudinal characteristics. Validation of the belt-tensioner model is completed by comparing the measured and predicted belt tension. Finally, it is shown by using a parametric investigation and phase-plane portrait that the response of the belt-tensioner system increases with the frequency and the amplitude of the excitation.


2019 ◽  
Vol 23 (7) ◽  
pp. 3049-3065
Author(s):  
Yu Zhang ◽  
Gang Ma ◽  
Sizhe Du ◽  
Yuanzhen Liu ◽  
Zhu Li ◽  
...  

2018 ◽  
Vol 18 (08) ◽  
pp. 1840006 ◽  
Author(s):  
Xiao-Wei Fan ◽  
Long-He Xu ◽  
Zhong-Xian Li

The pre-pressed spring self-centering energy dissipation (PS-SCED) brace that combines the friction energy dissipation mechanism with a self-centering member comprising combination disc springs is developed and experimentally studied. The configuration of the proposed bracing system is presented and a Bouc–Wen model-based restoring force model is proposed to predict its hysteretic behavior. Two large scale PS-SCED braces with different length and different types of disc springs are designed, fabricated, and tested under low cyclic reversed loadings, and results demonstrate that the PS-SCED brace exhibits stable and repeatable self-centering hysteretic responses with effective energy dissipation capacity. The ductility of the proposed bracing system can be enhanced by employing the disc springs with bearing surface, and increasing the length of the tube members or segments of the disc springs. The symmetry of the bearing force in tension and in compression meets the design requirement for bracing elements. And the proposed restoring force model can accurately portray the hysteretic behavior of the PS-SCED bracing system.


2016 ◽  
Vol 10 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Su Linwang ◽  
Yingtao Wang ◽  
Jian Cai ◽  
Yueling Long

This paper presents a trilinear restoring force model based on the test results of two square concrete-filled steel tubular (CFT) stub columns without binding bars and eight square CFT stub columns with binding bars subjected to constant axial load and cyclic lateral load. The effects of binding bars and axial load level on the specimens are considered to determine the feature points of the skeleton curves. Calculation formulas for the characteristic parameters of the model, including the yield load, the peak load and the ultimate load, are given by analyzing the influence of the confinement factor of steel tube, the confinement coefficient of binding bars and the axial load level. Additionally, the hysteretic rule under cyclic lateral load is confirmed. The predicted hysteretic cures and skeleton curves based on the proposed model are in good agreement with the experimental results.


2018 ◽  
Vol 21 (13) ◽  
pp. 2018-2029
Author(s):  
Xide Zhang ◽  
Zhiheng Deng ◽  
Xiaofang Deng ◽  
Jingwei Ying ◽  
Tao Yang ◽  
...  

To evaluate the ductility and energy dissipation capacity of the beam with concrete-encased steel truss, eight specimens with different types of steel truss, reinforcement ratios, and shear span ratios were tested by low-cyclic loading regime. The results indicated that beams with concrete-encased steel truss performed plumped load–displacement hysteretic loops as well as high strength and stiffness. Moreover, cross-web members improved their seismic behavior more effectively than non-cross-web members. Finally, the restoring force model of concrete-encased steel truss beam is proposed in accordance with the experimental results, which can be used to predict the load–displacement behavior of concrete-encased steel truss beam. The results could also provide a reference for the design and application of concrete-encased steel truss beam in practice.


2012 ◽  
Vol 271-272 ◽  
pp. 186-189 ◽  
Author(s):  
Feng Li Cao ◽  
Hong Bai Bai ◽  
Zhong Bo He ◽  
Guo Quan Ren

Dynamic load experiments of the disc-shaped metal rubber isolation component are performed. Through analyzing variation law of the parameters with amplitude and frequency, which are stiffness coefficient, damping coefficient and damping component factor, the hysteresis restoring force model which is able to fully reveal the dynamic characteristics of the component is established. The experimental verification results show that the theoretic calculations are consistent with the experimental data, which verifies the practicability and effectiveness of mathematical model and parameter identification. It has important practical significance for design of vibration isolation component with different requirements.


Sign in / Sign up

Export Citation Format

Share Document