scholarly journals Analysis on Evolutionary Stability Strategies of Carbon Emission of Logistics Enterprises Based on Carbon Tax

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoping Wu ◽  
Peng Liu ◽  
Qi Wei

In view of the problem of high carbon emissions of logistics enterprises, the government’s carbon tax policy, consumers’ willingness to purchase low-carbon services, and the carbon emission reduction behavior of logistics enterprises, the evolutionary game model between the government, consumers, and logistics enterprises is established by using the theory and method of evolutionary game, and the evolutionary stabilization strategies of the three parties under different parameters are analyzed. The research results show the following. (1) When setting the carbon tax rate, the government can ignore the impact on consumers and give more consideration to the influencing factors of logistics enterprises, which is conducive to the formulation of carbon emission reduction policies for logistics enterprises. (2) When the government sets a lower carbon tax rate, it can not only promote the carbon emission reduction of logistics enterprises but also be conducive to government supervision. (3) The evolution direction of the government’s final decision will not change due to the size of Y and Z. The government’s final decision is to adopt a regulatory strategy. The study provides theoretical guidance for the government to formulate carbon tax policies, guides consumers to purchase low-carbon services, and promotes carbon emission reduction in logistics enterprises.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


2020 ◽  
Vol 12 (4) ◽  
pp. 1385 ◽  
Author(s):  
Shengzhong Zhang ◽  
Yingmin Yu ◽  
Qihong Zhu ◽  
Chun Martin Qiu ◽  
Aixuan Tian

Previous literature has shown that manufacturers’ choices between radical and incremental green innovation modes can greatly impact the tradeoff between industry growth and carbon emission reduction. Yet, how the government can motivate manufacturers to implement radical green innovations to reduce carbon emission is unclear. In this paper, the researchers construct an evolutionary game model to analyze the joint impacts of carbon tax and innovation subsidy on manufacturers’ choices of green innovation mode. We derive the conditions for manufacturers’ stable strategies. Based on those results, we find that four factors—carbon tax, innovation subsidy, consumer green preference, and manufacturers’ capabilities of absorbing and adopting new technologies—may facilitate the choice of radical innovation. Furthermore, we conduct numerical simulations to verify the theoretical results, and further illustrate how the synergy of carbon tax rate and subsidy level affects the evolution of the green innovation mode choices. Specifically, we demonstrate the superiority of portfolio policy in the early stage of green innovation over single policy. In contrast, in the later stage, it is carbon tax but not innovation subsidy that remains effective. We discuss the insights for the government to formulate appropriate environmental policies to effectively promote the adoption of green innovation and reduce carbon emission.


Author(s):  
Biao Li ◽  
Yong Geng ◽  
Xiqiang Xia ◽  
Dan Qiao

To improve low-carbon technology, the government has shifted its strategy from subsidizing low-carbon products (LCP) to low-carbon technology. To analyze the impact of government subsidies based on carbon emission reduction levels on different entities in the low-carbon supply chain (LCSC), game theory is used to model the provision of government subsidies to low-carbon enterprises and retailers. The main findings of the paper are that a government subsidy strategy based on carbon emission reduction levels can effectively drive low-carbon enterprises to further reduce the carbon emissions. The government’s choice of subsidy has the same effect on the LCP retail price per unit, the sales volume, and the revenue of low-carbon products per unit. When the government subsidizes the retailer, the low-carbon product wholesale price per unit is the highest. That is, low-carbon enterprises use up part of the government subsidies by increasing the wholesale price of low-carbon products. The retail price of low-carbon products per unit is lower than the retail price of low-carbon products in the context of decentralized decision making, but the sales volume and revenue of low-carbon products are greater in the centralized decision-making. The cost–benefit-sharing contract could enable the decentralized decision model to achieve the same level of profit as the centralized decision model.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Cheng Che ◽  
Yi Chen ◽  
Xiaoguang Zhang ◽  
Zhihong Zhang

With the implementation of national carbon emission reduction policies and the development of online shopping, manufacturers are making low-carbon efforts and selling products through dual channels. This paper constructs a dual-channel supply chain decision-making model composed of low-carbon emission reduction manufacturers and retailers and studies the optimal decision-making problem of the supply chain under subsidies by the government based on emission reduction R&D and per unit product emission reduction. The research results show the following: (1) when the government subsidizes emission reduction R&D, the emission reduction will have an impact on retailers’ optimal prices, manufacturers’ optimal wholesale prices, and optimal direct sales channel sales prices. The profit of the manufacturer increases with the increase in carbon emissions, and the profit of the manufacturer increases to a certain level and then appears to decline. (2) When the government adopts a subsidy method based on the emission reduction per unit product, the manufacturer’s wholesale price and the selling price of direct sales channels, as well as the retailer’s own optimal price, will increase with the increase in emission reductions. Retailers’ profits will increase linearly with the increase in carbon emissions. Manufacturers’ profits will first increase in a straight line and then increase in a curve.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haoran Li ◽  
Wei Peng

Carbon emission has negative externalities, which will cause severe natural and social problems. In recent years, more and more attention has been paid to carbon emission reduction issue both in academic and application fields. This paper aims to explore the impact of punitive carbon tax and incentive carbon emission reduction subsidy on economy and environment through the dynamic stochastic general equilibrium (DSGE) framework. The results show that both carbon tax and carbon emission reduction subsidy policies can help to reduce carbon emissions and to improve environment quality. In addition, carbon emission reduction subsidy has a positive impact on economy, while carbon tax has the opposite impact. It follows that the incentive carbon emission reduction policy is more conducive to the coordinated development of economy and environment. This research can be a guideline for the government to formulate carbon emission abatement policies from the perspective of coordinated development.


Author(s):  
Ma Changsong ◽  
Yuan Tiantong ◽  
Zhong Lei ◽  
Liu Wei

AbstractThis paper studies the optimal low carbon production decision system with considered the constraints of carbon emission reduction policy for manufacturing enterprises producing two kinds of products in the free market. Firstly, The research proved the optimal production combination exists and it is unique under the carbon emissions limits, and next, the research analyzed the low-carbon production decision-making system in three situations, which are carbon emission trade decision, green technology input decision, and joint decision. The research results showed that carbon emission permits trade can increase more flexibility to manufacturing enterprises and increase their profits as well. However, the carbon emissions limits set by the government would have an important impact on the production decision system of manufacturing enterprises. Carbon emission permits trade and green technology investment can optimize and improve the production decision system of manufacturing enterprises to a certain extent. Meanwhile, the government's scientific and reasonable formulation of initial carbon quotas would mobilize the enthusiasm and initiative of manufacturing enterprises to participate in carbon emission reduction. The government should also guide and encourage enterprises to invest in and develop low-carbon emission reduction technologies through tax relief, so as to improve carbon emission reduction technologies and its innovations to reduce carbon dioxide emissions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chao-qun Han ◽  
Hua-ying Gu ◽  
Li-hui Sui ◽  
Chang-peng Shao

Since the tax of carbon emission is popular and consumers are exhibiting low-carbon preference, the green manufactures have to spend more extra cost on investing carbon emission reduction (CER) technology to decrease the carbon emission. To encourage the manufacture’s CER investment efforts, this paper explores the impact of carbon tax, CER cost, and consumers’ low-carbon preference on low-carbon decision-making and designs a revenue-sharing contract (RS) by constructing Stackelberg models. Based on the theoretical and numerical analysis, this paper finds that the supply chain would benefit from the increment of consumer’s environmental awareness but be depressed by the increase of the CER investment cost factor. Additionally, there exists a unique optimal carbon tax to make CER degree the maximum. Furthermore, RS can effectively promote manufacturers to reduce carbon emissions and also improve the supply chain efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhuoqi Teng ◽  
Xiaoli Li ◽  
Yuantao Fang ◽  
Hailing Fu

In the context of competition between two ports in Cournot, we studied optimal decision-making processes for the government and the port in four different situations before and after the integration of the port based on the subsidy and carbon tax mechanism. We analyzed the impacts of the carbon tax rate and emission reduction subsidy rate on social welfare and determined the optimal carbon tax rate, the optimal emission reduction subsidy rate, the optimal carbon emission level, and the optimal social welfare level in different situations. We also compared the optimal social welfare level and the optimal carbon emission level of the four situations before and after the integration. This research can be used as a policy reference for the government for the formation of environmental policies based on the goal of maximizing social welfare, and it could also be used for the port’s internal decision-making when the environmental policy has been set.


2021 ◽  
Vol 237 ◽  
pp. 01029
Author(s):  
Hangxin Guo ◽  
Zheng Liu ◽  
Mengmeng Zhao ◽  
Huihui Wang

“low carbon economy” puts forward new requirements for carbon emission reduction in all links of the supply chain. This paper takes the three-level clothing supply chain composed of government, supplier and manufacturer as the research object, considering the “free riding behavior” of clothing supplier and manufacturer, by constructing the three-party evolutionary game model, using the replication dynamic equation to analyze the evolution process of the three actors, and studies the influence of parameter change on the strategy selection of each agent. Finally, the simulation is carried out by Matlab. The results show that the strategies are affected by the government’s punishment, the “free ride” revenue of suppliers and manufacturers, and the cost of carbon emission reduction investment. Finally, based on the analysis results, some suggestions are put forward for enterprises to invest in carbon emission reduction.


Sign in / Sign up

Export Citation Format

Share Document