scholarly journals Controlling Conical Beam Carrying Orbital Angular Momentum with Transmissive Metasurface

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jun Sun ◽  
Ke Chen ◽  
Kai Qu ◽  
Junming Zhao ◽  
Tian Jiang ◽  
...  

Conical beams have potential uses in wireless and satellite-based communication. In this study, we propose a method using a transmissive metasurface to achieve full control of the diverging effect of orbital angular momentum (OAM) modes to form the desired conical beam. A patch antenna functioning as the feed source is combined with the transmissive metasurface to enable the integration of the source and metasurface. For full control of conical radiation, including the cone angle and OAM mode, we introduce both radial and circumferential phase gradients to the proposed metasurface. Experiments are conducted in the microwave region to validate the design method, which shows good agreement with the simulation results. The proposed metasurface provides a means of flexibly generating conical beams with the designed OAM mode to assist potential applications in high-speed wireless communication.


2018 ◽  
Vol 26 (16) ◽  
pp. 20990 ◽  
Author(s):  
Guowen Ding ◽  
Ke Chen ◽  
Tian Jiang ◽  
Boyu Sima ◽  
Junming Zhao ◽  
...  


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.



2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhifeng Zhang ◽  
Haoqi Zhao ◽  
Danilo Gomes Pires ◽  
Xingdu Qiao ◽  
Zihe Gao ◽  
...  

Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.



2017 ◽  
Vol 142 (4) ◽  
pp. 2682-2682
Author(s):  
Chengzhi Shi ◽  
Marc Dubois ◽  
Yuan Wang ◽  
Xiang Zhang


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1864
Author(s):  
Li Chen ◽  
Lin Zhao ◽  
Yuan Hao ◽  
Wenyi Liu ◽  
Yi Wu ◽  
...  

The metasurface spiral focusing (MSF) generator has gained attention in high-speed optical communications due to its spatial orthogonality. However, previous MSF generators only can generate a single orbital angular momentum (OAM) mode for one polarized light. Here, a MSF generator with tunable OAM is proposed and it has the ability to transform linearly polarized light (LPL), circularly polarized light or Gaussian beams into vortex beams which can carry tunable OAM at near-infrared wavelength by controlling the phase transition of vanadium dioxide (VO2). Utilizing this MSF generator, the beams can be focused on several wavelength-sized rings with efficiency as high as 76%, 32% when VO2 are in the insulating phase and in the metallic phase, respectively. Moreover, we reveal the relationship between the reflective focal length and transmissive focal length, and the latter is 2.3 times of the former. We further demonstrate the impact of Gaussian beams with different waist sizes on MSF generators: the increase in waist size produces the enhancement in spiral focusing efficiency and the decrease in size of focal ring. The MSF generator we proposed will be applicable to a variety of integrated compact optical systems, such as optical communication systems and optical trapping systems.



1970 ◽  
Vol 48 (22) ◽  
pp. 3504-3509 ◽  
Author(s):  
F. Aubke ◽  
F. G. Herring ◽  
A. M. Qureshi

The chemical shifts of the 14N nucleus in a number of nitrogen–halogen–oxygen compounds have been estimated within the framework of the i.n.d.o.-l.c.a.o.-s.c.f. method using approximate perturbed Hartree–Fock theory. Generally good agreement with experiment is achieved. The calculations indicate that the variation in 14N chemical shift is due to either changes in orbital angular momentum, or to the presence of low lying excited states, or to a combination of both effects.



1997 ◽  
Vol 40 (10) ◽  
pp. 733-758 ◽  
Author(s):  
Giovanni Vulpetti


Sign in / Sign up

Export Citation Format

Share Document