scholarly journals New Results on Zagreb Energy of Graphs

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Akbar Jahanbani ◽  
Rana Khoeilar

Let G be a graph with vertex set V G = v 1 , … , v n , and let d i be the degree of v i . The Zagreb matrix of G is the square matrix of order n whose i , j -entry is equal to d i + d j if the vertices v i and v j are adjacent, and zero otherwise. The Zagreb energy ZE G of G is the sum of the absolute values of the eigenvalues of the Zagreb matrix. In this paper, we determine some classes of Zagreb hyperenergetic, Zagreb borderenergetic, and Zagreb equienergetic graphs.

Author(s):  
Harishchandra S. Ramane ◽  
Mahadevappa M. Gundloor ◽  
Sunilkumar M. Hosamani

The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are – 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE(G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE(G1) = SE(G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12


Author(s):  
H. Hatefi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a graph with [Formula: see text] vertices, and let [Formula: see text] be the degree of the vertex [Formula: see text] in the graph [Formula: see text]. The Randić matrix of [Formula: see text] is the square matrix of order [Formula: see text] whose [Formula: see text]-entry is equal to [Formula: see text] if the vertex [Formula: see text] and the vertex [Formula: see text] of [Formula: see text] are adjacent, and [Formula: see text] otherwise. The Randić eigenvalues of [Formula: see text] are the eigenvalues of its Randić matrix and the Randić energy of [Formula: see text] is the sum of the absolute values of its Randić eigenvalues. In this paper, we obtain some new results for the Randić eigenvalues and the Randić energy of a graph.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650084 ◽  
Author(s):  
Harishchandra S. Ramane ◽  
Gouramma A. Gudodagi

The reciprocal complementary distance (RCD) matrix of a graph [Formula: see text] is defined as [Formula: see text], in which [Formula: see text] if [Formula: see text] and [Formula: see text] if [Formula: see text], where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the distance between the [Formula: see text]th and [Formula: see text]th vertex of [Formula: see text]. The [Formula: see text]-energy [[Formula: see text]] of [Formula: see text] is defined as the sum of the absolute values of the eigenvalues of RCD-matrix of [Formula: see text]. Two graphs [Formula: see text] and [Formula: see text] are said to be RCD-equienergetic if [Formula: see text]. In this paper, we obtain the RCD-eigenvalues and RCD-energy of the join of certain regular graphs and thus construct the non-RCD-cospectral, RCD-equienergetic graphs on [Formula: see text] vertices, for all [Formula: see text].


Author(s):  
H. Hatefi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a graph of order [Formula: see text] and [Formula: see text] be the degree of the vertex [Formula: see text], for [Formula: see text]. The [Formula: see text] matrix of [Formula: see text] is the square matrix of order [Formula: see text] whose [Formula: see text]-entry is equal to [Formula: see text] if [Formula: see text] is adjacent to [Formula: see text], and zero otherwise. Let [Formula: see text], be the eigenvalues of [Formula: see text] matrix. The [Formula: see text] energy of a graph [Formula: see text], denoted by [Formula: see text], is defined as the sum of the absolute values of the eigenvalues of [Formula: see text] matrix. In this paper, we prove that the star has the minimum [Formula: see text] energy among trees.


2014 ◽  
Vol 6 (1) ◽  
pp. 89-116 ◽  
Author(s):  
Hilal A. Ganie ◽  
Shariefuddin Pirzada ◽  
Antal Iványi

Abstract For a graph G with vertex set V(G) = {v1, v2, . . . , vn}, the extended double cover G* is a bipartite graph with bipartition (X, Y), X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two vertices xi and yj are adjacent if and only if i = j or vi adjacent to vj in G. The double graph D[G] of G is a graph obtained by taking two copies of G and joining each vertex in one copy with the neighbors of corresponding vertex in another copy. In this paper we study energy and Laplacian energy of the graphs G* and D[G], L-spectra of Gk* the k-th iterated extended double cover of G. We obtain a formula for the number of spanning trees of G*. We also obtain some new families of equienergetic and L-equienergetic graphs.


Author(s):  
Harishchandra S. Ramane ◽  
Hemaraddi N. Maraddi ◽  
Daneshwari Patil ◽  
Kavita Bhajantri

The degree subtraction adjacency matrix of a graph G is a square matrix DSA(G)=[dij], in which dij=d(vi)-d(vj), if the vertices vi and vj are adjacent and dij=0, otherwise, where d(u) is the degree of a vertex u. The DSA energy of a graph is the sum of the absolute values of the eigenvalues of DSA matrix. In this paper, we obtain the characteristic polynomial of the DSA matrix of graphs obtained from the complete graph. Further we study the DSA energy of these graphs.


2009 ◽  
Vol 85 (99) ◽  
pp. 39-46 ◽  
Author(s):  
H.S. Ramane ◽  
D.S. Revankar ◽  
Ivan Gutman ◽  
H.B. Walikar

The distance or D-eigenvalues of a graph G are the eigenvalues of its distance matrix. The distance or D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues. Two graphs G1 and G2 are said to be D-equienergetic if ED(G1) = ED(G2). Let F1 be the 5-vertex path, F2 the graph obtained by identifying one vertex of a triangle with one end vertex of the 3-vertex path, F3 the graph obtained by identifying a vertex of a triangle with a vertex of another triangle and F4 be the graph obtained by identifying one end vertex of a 4-vertex star with a middle vertex of a 3-vertex path. In this paper we show that if G is r-regular, with diam(G)? 2, and Fi,i = 1,2,3,4, are not induced subgraphs of G, then the k-th iterated line graph Lk(G) has exactly one positive D-eigenvalue. Further, if G is r-regular, of order n, diam(G)?2, and G does not have Fi,i=1,2,3,4, as an induced subgraph, then for k ?1, ED(Lk(G)) depends solely on n and r. This result leads to the construction of non D-cospectral, D-equienergetic graphs having same number of vertices and same number of edges.


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Author(s):  
C. M. Payne ◽  
P. M. Tennican

In the normal peripheral circulation there exists a sub-population of lymphocytes which is ultrastructurally distinct. This lymphocyte is identified under the electron microscope by the presence of cytoplasmic microtubular-like inclusions called parallel tubular arrays (PTA) (Figure 1), and contains Fc-receptors for cytophilic antibody. In this study, lymphocytes containing PTA (PTA-lymphocytes) were quantitated from serial peripheral blood specimens obtained from two patients with Epstein -Barr Virus mononucleosis and two patients with cytomegalovirus mononucleosis. This data was then correlated with the clinical state of the patient.It was determined that both the percentage and absolute number of PTA- lymphocytes was highest during the acute phase of the illness. In follow-up specimens, three of the four patients' absolute lymphocyte count fell to within normal limits before the absolute PTA-lymphocyte count.In one patient who was followed for almost a year, the absolute PTA- lymphocyte count was consistently elevated (Figure 2). The estimation of absolute PTA-lymphocyte counts was determined to be valid after a morphometric analysis of the cellular areas occupied by PTA during the acute and convalescent phases of the disease revealed no statistical differences.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


Sign in / Sign up

Export Citation Format

Share Document