scholarly journals Adsorption of 17α-Ethinyl Estradiol and Bisphenol A to Graphene-Based Materials: Effects of Configuration of Adsorbates and the Presence of Cationic Surfactant

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fang Wang ◽  
Wei Sha ◽  
Xin Wang ◽  
Yuntao Shang ◽  
Lei Hou ◽  
...  

Endocrine-disrupting chemicals (EDCs) have attracted much attention in recent years. Graphene-based materials (GMs) have been deemed as excellent adsorbents for the removal of EDCs. The objective of the present study was to understand how the cationic surfactants (CTAB; cetyltrimethylammonium nitrate) affect the adsorption of EDCs (17α-ethinyl estradiol (EE2) and bisphenol A (BPA)) on graphene oxide (GO), reduced graphene oxides (RGOs), and the few-layered commercial graphene (CG). It was observed that the presence of CTAB showed different effects on the adsorption of EDCs to different GMs. The adsorption of EDCs on GO was enhanced because of the enhanced hydrophobicity of GMs after the adsorption of CTAB and the newly formed hemimicelles by the adsorbed CTAB, which could serve as the partition phase for EDCs. Moreover, the electron donor-acceptor interaction and cation bridging effect of the –NH4+ group of the adsorbed CTAB between EDCs and GMs could also enhance the adsorption of EDCs to GMs. With the increase of the extent of GM reduction, the adsorption enhancement by the presence of CTAB weakened. This could be attributed to the competition and pore blockage effect caused by the adsorbed CTAB. It is worth noting that the enhancement of CTAB on the adsorption of BPA to GMs was more profound than that of EE2. This is likely because the pore blockage effect plays a less important role in the adsorption of BPA due to its smaller molecular diameter and deformable structure.

2017 ◽  
Author(s):  
Robin B. Gear ◽  
Scott M. Belcher

ABSTRACTThe endocrine disruptor bisphenol A (BPA) and the pharmaceutical 17α-ethinyl estradiol (EE) are synthetic chemicals with estrogen-like activities. Despite ubiquitous human exposure to BPA, and the wide-spread clinical use of EE as oral contraceptive adjuvant, the impact of these estrogenic endocrine disrupting chemicals (EDCs) on the immune system is unclear. Here we report results of in vivo dose response studies that analyzed the histology and microstructural changes in the spleen of adult male and female CD-1 mice exposed to 4 to 40,000 μg/kg/day BPA or 0.02 to 2 μg/kg/day EE from conception until 12-14 weeks of age. Results of that analysis indicate that both BPA and EE have dose- and sex-specific impacts on the cellular and microanatomical structures of the spleens that reveal minor alterations in immunomodulatory and hematopoietic functions. These findings support previous studies demonstrating the murine immune system as a sensitive target for estrogens, and that oral exposures to BPA and EE can have estrogen-like immunomodulatory affects in both sexes.


2015 ◽  
Vol 28 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Rui Li ◽  
Yanying Wang ◽  
Yinghua Deng ◽  
Guishen Liu ◽  
Xiaodong Hou ◽  
...  

2015 ◽  
Vol 6 (6) ◽  
pp. 539-552 ◽  
Author(s):  
S. A. Johnson ◽  
M. S. Painter ◽  
A. B. Javurek ◽  
M. R. Ellersieck ◽  
C. E. Wiedmeyer ◽  
...  

Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


Sign in / Sign up

Export Citation Format

Share Document