scholarly journals Early Osteogenic Differentiation Stimulation of Dental Pulp Stem Cells by Calcitriol and Curcumin

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mohammad Samiei ◽  
Atefeh Abedi ◽  
Simin Sharifi ◽  
Solmaz Maleki Dizaj

Curcumin, as a natural phenolic substance, is extracted from the rhizome of Curcuma longa (turmeric), which is effective in bone healthfulness. Calcitriol is an effective hormone in regulating bone remodeling and mineral homeostasis and immune response. Mesenchymal stem cells (MSCs) are found in most dental tissues and resemble bone marrow-derived MSCs. In this work, we investigated the effect of combination and individual treatment of curcumin and calcitriol on early osteogenic differentiation of dental pulp stem cells (DPSCs). Early osteogenic differentiation was evaluated and confirmed by the gene expression level of ALP and its activity. Curcumin individually and in combination with calcitriol increased ALP activity and osteoblast-specific mRNA expression of ALP when DPSCs were cultured in an osteogenic medium. Calcitriol alone increased the enzyme more than in combination with curcumin. These findings demonstrate that curcumin can induce early osteogenic differentiation of DPSCs like calcitriol as a potent stimulant of osteogenesis.

2021 ◽  
Vol 6 (9) ◽  
pp. 2742-2751
Author(s):  
Myung Chul Lee ◽  
Hoon Seonwoo ◽  
Kyoung Je Jang ◽  
Shambhavi Pandey ◽  
Jaewoon Lim ◽  
...  

2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

2018 ◽  
Vol 107 (1) ◽  
pp. 174-186 ◽  
Author(s):  
Milda Alksne ◽  
Egidijus Simoliunas ◽  
Migle Kalvaityte ◽  
Edvinas Skliutas ◽  
Ieva Rinkunaite ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengyue Li ◽  
Qiang Wang ◽  
Qi Han ◽  
Jiameng Wu ◽  
Hongfan Zhu ◽  
...  

IntroductionThis work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo.MethodsImmunofluorescence was conducted to ascertain the location of Nell-1 on DPSCs, HUVECs, and normal rat dental tissues. RT-PCR, Western blot, and ELISA were performed to observe the expression levels of angiogenic markers and determine the angiogenic differentiation of Nell-1 on DPSCs alone or co-cultured with HUVECs, as well as in vitro tube formation assay. Blood vessel number for all groups was observed and compared using immunohistochemistry by establishing a rat pulp exposure model.ResultsNell-1 is highly expressed in the nucleus of DPSCs and HUVECs and is co-expressed with angiogenic markers in normal rat pulp tissues. Hence, Nell-1 can promote the angiogenic marker expression in DPSCs alone and co-cultured with other cells and can enhance angiogenesis in vitro as well as in the pulp exposure model.ConclusionNell-1 may play a positive role in the angiogenic differentiation of DPSCs.


2020 ◽  
Vol 21 (7) ◽  
pp. 2280 ◽  
Author(s):  
Terezia Okajcekova ◽  
Jan Strnadel ◽  
Michal Pokusa ◽  
Romana Zahumenska ◽  
Maria Janickova ◽  
...  

Dental pulp stem cells (DPSCs) have excellent proliferative properties, mineralization potential and can be easily obtained from third molar teeth. Recently, many studies have focused on isolation and differentiation of DPSCs. In our study, we focused on biological properties of non-differentiated DPSCs in comparison with osteogenic differentiated cells from DPSCs. We analyzed morphology as well as mineralization potential using three varied osteogenic differentiation media. After fifteen days of differentiation, calcium deposit production was observed in all three osteogenic differentiation media. However, only one osteogenic medium, without animal serum supplement, showed rapid and strong calcification—OsteoMAX-XF™ Differentiation Medium. Therefore, we examined specific surface markers, and gene and protein expression of cells differentiated in this osteogenic medium, and compared them to non-differentiated DPSCs. We proved a decrease in expression of CD9 and CD90 mesenchymal stem cell surface markers, as well as downregulation in the expression of pluripotency genes (NANOG and OCT-4) and increased levels of expression in osteogenic genes (ALP, BSP, OCN and RUNX2). Moreover, osteogenic proteins, such as BSP and OCN, were only produced in differentiated cells. Our findings confirm that carefully selected differentiation conditions for stem cells are essential for their translation into future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document