scholarly journals lncRNA GAS5 Sensitizes Breast Cancer Cells to Ionizing Radiation by Inhibiting DNA Repair

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Yan Ma ◽  
Lei Yu ◽  
Wenxing Yan ◽  
Ling Qiu ◽  
Jianqiu Zhang ◽  
...  

Radioresistance of breast cancer is a major reason for therapeutic failure and limits further increases in the dose of radiation due to severe adverse effects. Recently, long noncoding RNAs (lncRNAs) have been shown to regulate cancer proliferation, chemoresistance, and radioresistance. Among these lncRNAs, lncRNA GAS5 expression was shown to be downregulated in breast cancer and related to trastuzumab resistance. However, its role in the radiation response is unclear. In this study, we demonstrated that lncRNA GAS5 expression was reduced in irradiated cells and that overexpression of GAS5 reduced cell viability and promoted cell apoptosis after irradiation. Moreover, overexpression of GAS5 resulted in increased G2/M arrest and unrepaired DNA damage, indicating a radiosensitizing role of GAS5 in breast cancer cells. Finally, we found that a GAS5-interacting miRNA, miR-21, reversed the radiosensitizing effects of GAS5 by inhibiting the apoptotic pathway. In conclusion, we found that lncRNA GAS5 sensitized breast cancer cells to ionizing radiation by inhibiting DNA repair and suppressing miR-21, identifying novel targets for breast cancer radiosensitization.

2021 ◽  
Author(s):  
Ningwei Fu ◽  
Ning Fan ◽  
Wenchao Luo ◽  
Lijia Lv ◽  
Jing Li ◽  
...  

Abstract Purpose: TFEB is a key regulator of autophagy-lysosomal biogenesis pathways, while its dysregulation is highly prevalent in various human cancers, but the specific contribution to breast cancer remains poorly understood. The main purpose of this study is to explore the role of TFEB in breast cancer proliferation, metastasis and maintaining breast cancer stem cells (BCSCs) traits, thus uncovering its underlying mechanism.Methods: Bioinformatics, western blotting and immunohistochemical staining were applied to analyze the expression of TFEB in breast cancer. Stable down-regulation TFEB cells were established in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT, clone formation, wound healing, transwell and 3D tumor invasion assays were used to evaluate the proliferation, migration and invasion ability of breast cancer cells. Mammosphere formation, immunocytochemical (ICC) staining were used to detect the effect of down-regulating TFEB on breast cancer stem cells. Results: we demonstrated that higher expression of TFEB was found in breast cancer. TFEB depletion had inhibitory effects on cellular proliferation, migration and invasion of breast cancer cells. Moreover, knockdown TFEB decreased mammosphere formation ability of BCSCs and expression of cancer stem cell markers. Autophagy-lysosomal related proteins were decreased by down regulation of TFEB. Conclusion: we uncovered a critical role of TFEB in breast cancer proliferation and metastasis, and BCSCs self-renewal and stemness. The underlying mechanisms involve in maintaining BCSCs traits, and dysregulating lysosome functions.


2012 ◽  
Vol 287 (52) ◽  
pp. 43720-43729 ◽  
Author(s):  
Heng Lu ◽  
Liu Hu ◽  
Tianshu Li ◽  
Satadru Lahiri ◽  
Chao Shen ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 17-29
Author(s):  
Emann M Rabie ◽  
Sherry X Zhang ◽  
Andreas P Kourouklis ◽  
A Nihan Kilinc ◽  
Allison K Simi ◽  
...  

Abstract Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1468
Author(s):  
Sumeyye Cavdarli ◽  
Larissa Schröter ◽  
Malena Albers ◽  
Anna-Maria Baumann ◽  
Dorothée Vicogne ◽  
...  

The O-acetylated form of GD2, almost exclusively expressed in cancerous tissues, is considered to be a promising therapeutic target for neuroectoderm-derived tumors, especially for breast cancer. Our recent data have shown that 9-O-acetylated GD2 (9-OAcGD2) is the major O-acetylated ganglioside species in breast cancer cells. In 2015, Baumann et al. proposed that Cas 1 domain containing 1 (CASD1), which is the only known human sialyl-O-acetyltransferase, plays a role in GD3 O-acetylation. However, the mechanisms of ganglioside O-acetylation remain poorly understood. The aim of this study was to determine the involvement of CASD1 in GD2 O-acetylation in breast cancer. The role of CASD1 in OAcGD2 synthesis was first demonstrated using wild type CHO and CHOΔCasd1 cells as cellular models. Overexpression using plasmid transfection and siRNA strategies was used to modulate CASD1 expression in SUM159PT breast cancer cell line. Our results showed that OAcGD2 expression was reduced in SUM159PT that was transiently depleted for CASD1 expression. Additionally, OAcGD2 expression was increased in SUM159PT cells transiently overexpressing CASD1. The modulation of CASD1 expression using transient transfection strategies provided interesting insights into the role of CASD1 in OAcGD2 and OAcGD3 biosynthesis, and it highlights the importance of further studies on O-acetylation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document