scholarly journals Animation Character Detection Algorithm Based on Clustering and Cascaded SSD

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yuan Wang

With the evolution of the Internet and information technology, the era of big data is a new digital one. Accordingly, animation IP has been more and more widely welcomed and concerned with the continuous development of the domestic and international animation industry. Hence, animation video analysis will be a good landing application for computers. This paper proposes an algorithm based on clustering and cascaded SSD for object detection of animation characters in the big data environment. In the training process, the improved classification Loss function based on Focal Loss and Truncated Gradient was used to enhance the initial detection effect. In the detection phase, this algorithm designs a small target enhanced detection module cascaded with an SSD network. In this way, the high-level features corresponding to the small target region can be extracted separately to detect small targets, which can effectively enhance the detection effect of small targets. In order to further improve the effect of small target detection, the regional candidate box is reconstructed by a k-means clustering algorithm to improve the detection accuracy of the algorithm. Experimental results demonstrate that this method can effectively detect animation characters, and performance indicators are better than other existing algorithms.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dongmei Shi ◽  
Hongyu Tang

Deep learning theory is widely used in face recognition. Combined with the needs of classroom attendance and students’ learning status monitoring, this article analyzes the YOLO (You Only Look Once) face recognition algorithms based on regression method. Aiming at the problem of small target missing detection in the YOLOv3 network structure, an improved YOLOv3 algorithm based on Bayesian optimization is proposed. The algorithm uses deep separable convolution instead of conventional convolution to improve the Darknet-53 basic network, and it reduces the amount of calculation and parameters of the network. A multiscale feature pyramid is built, and an attention guidance module is designed to strengthen multiscale fusion, detecting different sizes of targets. The loss function is improved to solve the imbalance of positive and negative sample distribution and the imbalance between simple samples and difficult samples. The Bayesian function is adopted to optimize the classifier and improve the classification efficiency and accuracy, ensuring the accuracy of small target detection. Five groups of comparative experiments are carried out on public COCO and VOC2012 datasets and self-built datasets. The experimental results show that the proposed improved YOLOv3 model can effectively improve the detection accuracy of multiple faces and small targets. Compared with the traditional YOLOv3 model, the mean mAP of the target is improved by more than 1.2%.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012008
Author(s):  
Hui Liu ◽  
Keyang Cheng

Abstract Aiming at the problem of false detection and missed detection of small targets and occluded targets in the process of pedestrian detection, a pedestrian detection algorithm based on improved multi-scale feature fusion is proposed. First, for the YOLOv4 multi-scale feature fusion module PANet, which does not consider the interaction relationship between scales, PANet is improved to reduce the semantic gap between scales, and the attention mechanism is introduced to learn the importance of different layers to strengthen feature fusion; then, dilated convolution is introduced. Dilated convolution reduces the problem of information loss during the downsampling process; finally, the K-means clustering algorithm is used to redesign the anchor box and modify the loss function to detect a single category. The experimental results show that the improved pedestrian detection algorithm in the INRIA and WiderPerson data sets under different congestion conditions, the AP reaches 96.83% and 59.67%, respectively. Compared with the pedestrian detection results of the YOLOv4 model, the algorithm improves by 2.41% and 1.03%, respectively. The problem of false detection and missed detection of small targets and occlusion has been significantly improved.


Author(s):  
ZHEN-XUE CHEN ◽  
CHENG-YUN LIU ◽  
FA-LIANG CHANG

It is an important and challenging problem to detect small targets in clutter scene and low SNR (Signal Noise Ratio) in infrared (IR) images. In order to solve this problem, a method based on feature salience is proposed for automatic detection of targets in complex background. Firstly, in this paper, the method utilizes the average absolute difference maximum (AADM) as the dissimilarity measurement between targets and background region to enhance targets. Secondly, minimum probability of error was used to build the model of feature salience. Finally, by computing the realistic degree of features, this method solves the problem of multi-feather fusion. Experimental results show that the algorithm proposed shows better performance with respect to the probability of detection. It is an effective and valuable small target detection algorithm under a complex background.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Peng Wang ◽  
Haiyan Wang ◽  
Xiaoyan Li ◽  
Lingling Zhang ◽  
Ruohai Di ◽  
...  

With the development of deep learning, target detection from vision sensor has achieved high accuracy and efficiency. However, small target detection remains a challenge due to inadequate use of semantic information and detailed texture information of underlying features. To solve the above problems, this paper proposes a small target detection algorithm based on Mask R-CNN model which integrates transfer learning and deep separable network. Firstly, the feature pyramid fusion structure is introduced to enhance the learning effect of low-level and high-level features, especially to strengthen the information channel of low-level feature and meanwhile optimize the feature information of small target. Secondly, the ELU function is used as the activation function to solve the problem that the original activation function disappears in the negative half axis gradient. Finally, a new loss function F-Softmax combined with Focal Loss was adopted to solve the imbalance of positive and negative sample proportions. In this paper, self-made data set is used to carry out experiments, and the experimental results show that the proposed algorithm makes the detection accuracy of small targets reach 66.5%.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Fan Xiangsuo ◽  
Xu Zhiyong

In order to improve the detection ability of dim and small targets in dynamic scenes, this paper first proposes an anisotropic gradient background modeling method combined with spatial and temporal information and then uses the multidirectional gradient maximum of neighborhood blocks to segment the difference maps. On the basis of previous background modeling and segmentation extraction candidate targets, a dim small target detection algorithm for local energy aggregation degree of sequence images is proposed. Experiments show that compared with the traditional algorithm, this method can eliminate the interference of noise to the target and improve the detection ability of the system effectively.


2018 ◽  
Vol 27 (04) ◽  
pp. 1860006
Author(s):  
Nikolaos Tsapanos ◽  
Anastasios Tefas ◽  
Nikolaos Nikolaidis ◽  
Ioannis Pitas

Data clustering is an unsupervised learning task that has found many applications in various scientific fields. The goal is to find subgroups of closely related data samples (clusters) in a set of unlabeled data. A classic clustering algorithm is the so-called k-Means. It is very popular, however, it is also unable to handle cases in which the clusters are not linearly separable. Kernel k-Means is a state of the art clustering algorithm, which employs the kernel trick, in order to perform clustering on a higher dimensionality space, thus overcoming the limitations of classic k-Means regarding the non-linear separability of the input data. With respect to the challenges of Big Data research, a field that has established itself in the last few years and involves performing tasks on extremely large amounts of data, several adaptations of the Kernel k-Means have been proposed, each of which has different requirements in processing power and running time, while also incurring different trade-offs in performance. In this paper, we present several issues and techniques involving the usage of Kernel k-Means for Big Data clustering and how the combination of each component in a clustering framework fares in terms of resources, time and performance. We use experimental results, in order to evaluate several combinations and provide a recommendation on how to approach a Big Data clustering problem.


Author(s):  
Shaoyi Li ◽  
Xiaotian Wang ◽  
Xi Yang ◽  
Kai Zhang ◽  
Saisai Niu

Infrared dim and small target detection has an important role in the infrared thermal imaging seeker, infrared search and tracking system, space-based infrared system and other applications. Inspired by human visual system (HVS), based on the fusion of significant features of targets, the present study proposes an infrared dim and small target detection algorithm for complex backgrounds. Firstly, in order to calculate the target saliency map, the proposed algorithm initially uses the difference of Gaussian (DoG) and the contourlet filters for the preprocessing and fusion, respectively. Then the multi-scale improved local contrast measure (ILCM) method is applied to obtain the interested target area, effectively suppress the background clutter and improve the target signal-to-clutter ratio. Secondly, the optical flow method is used to estimate motion regions in the saliency map, which matches with the interested target region to achieve the initial target screening. Finally, in order to reduce the false alarm rate, forward pipeline filtering and optical flow estimation information are applied to achieve the multi-frame target recognition and achieve continuous detection of dim and small targets in image sequences. Experimental results show that compared with the conventional Tophat (TOP-HAT) and ILCM algorithms, the proposed algorithm can achieve stable, continuous and adaptive target detection for multiple backgrounds. The area under curve (AUC) and the harmonic average measure F1 are used to measure the overall performance and optimal performance of the target detection effect. For sky, sea and ground backgrounds, the test results of proposed algorithm for most sequences are 1. It is concluded that the proposed algorithm significantly improves the detection effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Lv ◽  
Zhengbo Yin ◽  
Zhezhou Yu

In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports. Training set, verification set, and test set contain 73490 images, 22722 images, and 2138 images, respectively. It is assumed that the number of detected positive samples and negative samples is A and B, respectively, and the number of undetected positive samples and negative samples is C and D, respectively. The experimental results show that the precision-recall curve of DFS for six types of targets shows that DFS has the best detection effect for bridges and the worst detection effect for boats. The main reason is that the size of the bridge is relatively large, and it is clearly distinguished from the background in the image, so the detection difficulty is low. However, the target of the boat is very small, and it is easy to be mixed with the background, so it is difficult to detect. The MAP of DFS is improved by 12.82%, the detection accuracy is improved by 13%, and the recall rate is slightly decreased by 1% compared with YOLOv2. According to the number of detection targets, the number of false positives (FPs) of DFS is much less than that of YOLOv2. The false positive rate is greatly reduced. In addition, the average IOU of DFS is 11.84% higher than that of YOLOv2. For small target detection efficiency and large remote sensing image detection, the DFS algorithm has obvious advantages.


Author(s):  
David Pfander ◽  
Gregor Daiß ◽  
Dirk Pflüger

Clustering is an important task in data mining that has become more challenging due to the ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance clustering approach is required. Sparse grid clustering is a density-based clustering method that uses a sparse grid density estimation as its central building block. The underlying density estimation approach enables the detection of clusters with non-convex shapes and without a predetermined number of clusters. In this work, we introduce a new distributed and performance-portable variant of the sparse grid clustering algorithm that is suited for big data settings. Our compute kernels were implemented in OpenCL to enable portability across a wide range of architectures. For distributed environments, we added a manager-worker scheme that was implemented using MPI. In experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points in a 10-dimensional dataset, we show the performance and scalability of our approach. The dataset with 100 million data points was clustered in 1198s using 128 nodes of Piz Daint. This translates to an overall performance of 352TFLOPS. On the node-level, we provide results for two GPUs, Nvidia's Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak performance across all compute kernels and devices, demonstrating the performance portability of our approach.


Author(s):  
A. V. Sokolov ◽  
D. A. Isakov

Block symmetric ciphers are one of the most important components of modern information security systems. At the same time, in addition to the structure of the applied block symmetric cipher, the cryptographic strength and performance of the information protection system is largely determined by the applied encryption mode. In addition to high performance and high-quality destruction of block statistics, modern encryption modes should also protect encrypted information from occurred or intentionally introduced errors. In this paper, we have developed an encryption mode with blocks skipping and using a pseudo-random key sequence generator, which allows checking the integrity of encrypted information with accurate detection of the place where an error was introduced. In this case, the error detection accuracy is determined by the adjustable parameter of the macroblock size and can be set depending on the level of importance of the protected information. The developed encryption mode is characterized by the following key advantages: reducing the number of required encryption operations by half, while providing a high level of cryptographic quality; more effective destruction of macroblock statistics due to the use of an additional generator of pseudo-random key sequences, the impossibility of propagation of the occurred (intentionally introduced) error outside the macroblock, as well as higher values of the number of protection levels due to the possibility of classifying the initial states of the applied generators of pseudo-random key sequences. As proposed in this paper, the mode of authenticated encryption with blocks skipping can be recommended for use on mobile platforms that are demanding both in terms of the quality and reliability of the protected information and are limited in terms of computing and power resources.


Sign in / Sign up

Export Citation Format

Share Document