scholarly journals Durability Prediction Method of Concrete Soil Based on Deep Belief Network

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Xiao Tian ◽  
Niankun Zhu

To truly reflect the durability characteristics of concrete subjected to multiple factors under complex environmental conditions, it is necessary to discuss the prediction of its durability. In response to the problem of durability prediction of traditional concrete structures, there is a low prediction accuracy, and the predicted time is long, and a concrete structural durability prediction method based on the deep belief network is proposed. The influencing factors of the concrete structural durability parameters are analyzed by two major categories of concrete material and external environmental conditions, and the transmission of chloride ions in the concrete structure is described. According to the disconnection of the steel bars, the durability of the concrete structure is started, and the determination is determined. The concrete structural antiflexural strength, using a deep belief network training concrete structural antiflexural strength judgment data, constructs a concrete structural durability predictive model and completes the durability prediction of the concrete structure based on the deep belief network. The proposed prediction method based on the deep belief network has a high prediction accuracy of 98% for the durability of concrete column structures. The simulation results show that the concrete structural durability’s prediction accuracy is high and the prediction time is short. The prediction of concrete durability discussed here has important guiding significance for the improvement of concrete durability test methods and the improvement of concrete durability evaluation standards in China.

2019 ◽  
Vol 9 (18) ◽  
pp. 3765 ◽  
Author(s):  
Yin Xing ◽  
Jianping Yue ◽  
Chuang Chen ◽  
Yunfei Xiang ◽  
Yang Chen ◽  
...  

Accurate PM2.5 concentration prediction is crucial for protecting public health and improving air quality. As a popular deep learning model, deep belief network (DBN) for PM2.5 concentration prediction has received increasing attention due to its effectiveness. However, the DBN structure parameters that have a significant impact on prediction accuracy and computation time are hard to be determined. To address this issue, a modified grey wolf optimization (MGWO) algorithm is proposed to optimize the DBN structure parameters containing number of hidden nodes, learning rate, and momentum coefficient. The methodology modifies the basic grey wolf optimization (GWO) algorithm using the nonlinear convergence and position update strategies, and then utilizes the training error of the DBN to calculate the fitness function of the MGWO algorithm. Through the multiple iterations, the optimal structure parameters are obtained, and a suitable predictor is finally generated. The proposed prediction model is validated on a real application case. Compared with the other prediction models, experimental results show that the proposed model has a simpler structure but higher prediction accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Laisen Nie ◽  
Xiaojie Wang ◽  
Liangtian Wan ◽  
Shui Yu ◽  
Houbing Song ◽  
...  

Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT) and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.


2012 ◽  
Vol 594-597 ◽  
pp. 999-1004
Author(s):  
Li Zeng ◽  
Yuan Cheng Guo ◽  
Zhuo Zhao

For the pre-stressed concrete structure under marine environment,the stochastic characters of structure and environment such as concrete cover depth, initial chloride ions concentration, chloride diffusion coefficient in concrete, critical chloride ions concentration and structural surface chloride ions concentration affect the structural durability in designed service life greatly. Based on the diffusion mechanism of chloride ions, considering the durability failure character of pre-stressed concrete structure, the limit state function of durability failure is established, the sensitivity of durability influencing parameters is analyzed, and the Monte Carlo simulation is carried out based on the stochastic characters of influencing parameters, which will provide method and foundation for the structural durability design, construction and quality control of similar project.


Measurement ◽  
2019 ◽  
Vol 136 ◽  
pp. 25-35 ◽  
Author(s):  
Xiao Zhuang ◽  
Xiaolei Yu ◽  
Di Zhou ◽  
Zhimin Zhao ◽  
Wenjie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document