scholarly journals Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Zhuang Zhao ◽  
Jiyu Wei ◽  
Bin Jiang

Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model.

Author(s):  
A. S. M. Shafi ◽  
Mohammad Motiur Rahman

Gastrointestinal cancer is one of the leading causes of death across the world. The gastrointestinal polyps are considered as the precursors of developing this malignant cancer. In order to condense the probability of cancer, early detection and removal of colorectal polyps can be cogitated. The most used diagnostic modality for colorectal polyps is video endoscopy. But the accuracy of diagnosis mostly depends on doctors' experience that is crucial to detect polyps in many cases. Computer-aided polyp detection is promising to reduce the miss detection rate of the polyp and thus improve the accuracy of diagnosis results. The proposed method first detects polyp and non-polyp then illustrates an automatic polyp classification technique from endoscopic video through color wavelet with higher-order statistical texture feature and Convolutional Neural Network (CNN). Gray Level Run Length Matrix (GLRLM) is used for higher-order statistical texture features of different directions (Ɵ = 0o, 45o, 90o, 135o). The features are fed into a linear support vector machine (SVM) to train the classifier. The experimental result demonstrates that the proposed approach is auspicious and operative with residual network architecture, which triumphs the best performance of accuracy, sensitivity, and specificity of 98.83%, 97.87%, and 99.13% respectively for classification of colorectal polyps on standard public endoscopic video databases.


2021 ◽  
pp. 102568
Author(s):  
Mesut Ersin Sonmez ◽  
Numan Eczacıoglu ◽  
Numan Emre Gumuş ◽  
Muhammet Fatih Aslan ◽  
Kadir Sabanci ◽  
...  

Author(s):  
Sumit S. Lad ◽  
◽  
Amol C. Adamuthe

Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


SINERGI ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 239
Author(s):  
Dwi Lydia Zuharah Astuti ◽  
Samsuryadi Samsuryadi ◽  
Dian Palupi Rini

Classification of facial expressions has become an essential part of computer systems and human-computer fast interaction. It is employed in various applications such as digital entertainment, customer service, driver monitoring, and emotional robots. Moreover, it has been studied through several aspects related to the face itself when facial expressions change based on the point of view or perspective. Facial curves such as eyebrows, nose, lips, and mouth will automatically change. Most of the proposed methods have limited frontal Face Expressions Recognition (FER), and their performance decrease when handling non-frontal and multi-view FER cases.  This study combined both methods in the classification of facial expressions, namely the Principal Component Analysis (PCA) and Convolutional Neural Network (CNN) methods. The results of this study proved to be more accurate than that of previous studies. The combination of PCA and CNN methods in the Static Facial Expressions in The Wild (SFEW) 2.0 dataset obtained an accuracy amounting to 70.4%; the CNN method alone only obtained an accuracy amounting to 60.9%.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2005 ◽  
Author(s):  
Jiaying Deng ◽  
Wenhai Zhang ◽  
Xiaomei Yang

To avoid power supply hazards caused by cable failures, this paper presents an approach of incipient cable failure recognition and classification based on variational mode decomposition (VMD) and a convolutional neural network (CNN). By using VMD, the original current signal is decomposed into seven modes with different center frequencies. Then, 42 features are extracted for the seven modes and used to construct a feature vector as input of the CNN to classify incipient cable failure through deep learning. Compared with using the original signals directly as the CNN input, the proposed approach is more efficient and robust. Experiments on different classifiers, namely, the decision tree (DT), K-nearest neighbor (KNN), BP neural network (BP) and support vector machine (SVM), and show that the CNN outperforms the other classifiers in terms of accuracy.


2020 ◽  
Vol 10 (7) ◽  
pp. 1746-1753
Author(s):  
Lan Liu ◽  
Xiankun Sun ◽  
Chengfan Li ◽  
Yongmei Lei

Conventional methods of medical text data classification, neglect of context among different words and semantic information, has a poor text description, classification effect and generalization capability and robustness. To tackle the inefficiencies and low precision in the classification of medical text data, in this paper, we presented a new classification method with improved convolutional neural network (CNN) and support vector machine (SVM), i.e., CNN-SVM method. In the method, some convolution kernel filters that contribute greatly to the CNN model are first selected by the average response energy (ARE) value, and then used to simplify and reconstruct the CNN model. Next, the SVM classifier was optimized by firefly algorithm (FA) and context information to overcome the disadvantages of over-saturation and over-training in SVM classification. Finally, the presented CNN-SVM method is tested by the simulation experiment and the true classification of medical text data. The experimental results show that the presented CNN-SVM method in this paper can significantly reduce the complexity and amount of computation compared to the conventional methods, and further promote the computational efficiency and classification accuracy of medical text data.


Sign in / Sign up

Export Citation Format

Share Document