scholarly journals Study on Structural Characteristics of Composite Smart Grille Based on Principal Component Analysis

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Kong Fanxiao ◽  
Yao Huazhong ◽  
Xie Weidong

In recent years, many scholars have conducted in-depth and extensive research on the mechanical properties, preparation methods, and structural optimization of grid structural materials. In this paper, the structural characteristics of composite intelligent grid are studied by combining theoretical analysis with experiments. According to the existing conditions in the laboratory, the equilateral triangular grid structure experimental pieces were prepared. In this paper, principal component analysis combined with nearest neighbor method was used to detect the damage of composite plates. On this basis, the multiobjective robustness optimization of the structure is carried out based on artificial intelligence algorithm, which makes the structure quality and its sensitivity to uncertain parameters lower. Particle swarm optimization (PSO) is used in neural network training. The damage characteristics of different grid structures, different impact positions, and different impact energies were studied. The results show that the structural damage types, areas, and propagation characteristics are very different when the structure is impacted at different positions, which verifies that the grid structure has a good ability to limit the damage diffusion and shows that the grid structure has a good ability to resist damage.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tai-Xiang Jiang ◽  
Ting-Zhu Huang ◽  
Xi-Le Zhao ◽  
Tian-Hui Ma

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new “image matrix.” By replacing the images with the new “image matrix” in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


2020 ◽  
Vol 2 (2) ◽  
pp. 29-38
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hilman Mujahid Purnama ◽  
Atika Nur Rahmawati

Pengenalan wajah manusia (face recognition) merupakan salah satu bidang penelitian yang penting dan belakangan ini banyak aplikasi yang menerapkannya, baik di bidang komersil ataupun di bidang penegakan hukum. Pengenalan wajah merupakan sebuah sistem yang berfungsikan untuk mengidentifikasi berdasarkan ciri-ciri dari wajah seseorang berbasis biometrik yang memiliki keakuratan tinggi. Pengenalan wajah dapat diterapkan pada sistem keamanan. Banyak metode yang dapat digunakan dalam aplikasi pengenalan wajah untuk keamanan sistem, namun pada artikel ini akan membahas tentang dua metode yaitu Two Dimensial Principal Component Analysis dan Kernel Fisher Discriminant Analysis dengan metode klasifikasi menggunakan K-Nearest Neigbor. Kedua metode ini diuji menggunakan metode cross validation. Hasil dari penelitian terdahulu terbukti bahwa sistem pengenalan wajah metode Two Dimensial Principal Component Analysis dengan 5-folds cross validation menghasilkan akurasi sebesar 88,73%, sedangkan dengan 2-folds validation akurasi yang dihasilkan sebesar 89,25%. Dan pengujian metode Kernel Fisher Discriminant dengan 2-folds cross validation menghasilkan akurasi rata rata sebesar 83,10%.


2014 ◽  
Vol 578-579 ◽  
pp. 1020-1023
Author(s):  
Jing Zhou Lu ◽  
Jia Chen Wang ◽  
Xu Zhu

In this paper, we introduce a set of techniques for time series analysis based on principal component analysis (PCA). Firstly, the autoregressive (AR) model is established using acceleration response data, and the root mean squared error (RMSE) of AR model is calculated based on PCA. Then a new damage sensitive feature (DSF) based on the AR coefficients is presented. To test the efficacy of the damage detection and localization methodologies, the algorithm has been tested on the analytical and experimental results of a three-story frame structure model of the Los Alamos National Laboratory. The result of the damage detection indicates that the algorithm is able to identify and localize minor to severe damage as defined for the structure. It shows that the suggested method can lead to less amount of computing time, high suitability and identification accuracy.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiaohong Wu ◽  
Jin Zhu ◽  
Bin Wu ◽  
Chao Zhao ◽  
Jun Sun ◽  
...  

The detection of liquor quality is an important process in the liquor industry, and the quality of Chinese liquors is partly determined by the aromas of the liquors. The electronic nose (e-nose) refers to an artificial olfactory technology. The e-nose system can quickly detect different types of Chinese liquors according to their aromas. In this study, an e-nose system was designed to identify six types of Chinese liquors, and a novel feature extraction algorithm, called fuzzy discriminant principal component analysis (FDPCA), was developed for feature extraction from e-nose signals by combining discriminant principal component analysis (DPCA) and fuzzy set theory. In addition, principal component analysis (PCA), DPCA, K-nearest neighbor (KNN) classifier, leave-one-out (LOO) strategy and k-fold cross-validation (k = 5, 10, 20, 25) were employed in the e-nose system. The maximum classification accuracy of feature extraction for Chinese liquors was 98.378% using FDPCA, showing this algorithm to be extremely effective. The experimental results indicate that an e-nose system coupled with FDPCA is a feasible method for classifying Chinese liquors.


Author(s):  
L.N. Desinaini ◽  
Azizatul Mualimah ◽  
Dian C. R. Novitasari ◽  
Moh. Hafiyusholeh

AbstractParkinson’s disease is a neurological disorder in which there is a gradual loss of brain cells that make and store dopamine. Researchers estimate that four to six million people worldwide, are living with Parkinson’s. The average age of patients is 60 years old, but some are diagnosed at age 40 or even younger and the worst thing is some patients are late to find out that they have Parkinson's disease. In this paper, we present a diagnosis system based on Fuzzy K-Nearest Neighbor (FKNN) to detect Parkinson’s disease. We use Parkinson’s disease dataset taken from UCI Machine Learning Repository. The first step is normalize the Parkinson’s disease dataset and analyze using Principal Component Analysis (PCA). The result shows that there are four new factors that influence Parkinson’s disease with total variance is 85.719%. In classification step, we use several percentage of training data to classify (detect) the Parkinson's disease i.e. 50%, 60%, 70%, 75%, 80% and 90%. We also use k = 3, 5, 7, and 9. The classification result shows that the highest accuracy obtained for the percentage of training data is 90% and k = 5, where 19 are correctly classified i.e. 14 positive data and 5 negative data, while 1 positive data is classified incorrectly.Keywords: Parkinson's disease; Fuzzy K-Nearest Neighbor; Principal Component Analysis. AbstrakPenyakit Parkinson merupakan kelainan sel saraf pada otak yang menyebabkan hilangnya dopamin pada otak. Para peneliti mengestimasi bahwa, empat sampai enam juta orang di dunia, menderita Parkinson. Penyakit ini rata-rata diderita oleh pasien berusia 60 tahun, namun beberapa orang terdeteksi saat berusia 40 tahun atau lebih muda dan hal terburuk adalah seseorang terlambat untuk mendeteksinya. Di dalam artikel ini, kami menyajikan sistem diagnosa penyakit Parkinson menggunakan metode Fuzzy K-Nearest Neighbor (FKNN). Kami menggunakan Data uji yang diperoleh dari UCI Machine Learning Repository yang telah banyak diterapkan pada masalah klasifikasi. Tahapan pertama yang kami lakukan adalah menormalisasi data kemudian menganalisisnya menggunakan Analisis Komponen Utama (Principal Component Analysis). Hasil Analisis Komponen Utama menunjukkan bahwa terdapat empat factor baru yang mempengaruhi penyakit Parkinson dengan variansi total 87,719%. Pada tahap klasifikasi, kami menggunakan beberapa prosentase data latih untuk mendeteksi penyakit yaitu 50%, 60%, 70%, 75%, 80% and 90%. Selain itu, kami menggunakan beberapa nilai k yaitu 3, 5, 7, and 9. Hasil menunjukkan bahwa klasifikasi dengan akurasi tertinggi diperoleh untuk 90% data latih dengan k = 5, dimana 19 diklasifikasikan secara tepat yaitu 14 data positif dan 5 data negatif, sedangkan satu data positif tidak diklasifikasikan dengan tepat.Keywords: penyakit Parkinson; Fuzzy K-Nearest Neighbor; Analisis Komponen Utama.


SinkrOn ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Moh. Arie Hasan ◽  
Arief Setya Budi

Pears is a fruit that is widely available in tropical climates such as in western Europe, Asia, Africa and one of them is Indonesia. There are many types of pears in Indonesia. Types of pears can be distinguished from the color, size, and shape. But it is still difficult for ordinary people to get to know the types of pears. This is what gave rise to the idea to conduct research related to image processing to classify three types of pears namely abate, red and william pears in order to help determine the type of pears. The pear type classification process is done by verify the image of pears based on existing training data. The research method used consisted of preprocessing image segmentation with morphological operations and feature extraction into Principal Component Analysis (PCA). The classification algorithm used is K-Nearest Neighbor (KNN). The use of adequate training data will further improve the classification of types of pears. The final results of this study amounted to 87.5%.


Sign in / Sign up

Export Citation Format

Share Document